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Axioms for Number Systems

Let S be a number system (S,+,×)
Axioms for Addition:

A1: ∀α, β ∈ S α+ β = β + α

A2: ∀α, β, γ ∈ S (α+ β) + γ = α+ (β + γ)

A3: ∃0 ∈ S s.t. ∀α ∈ S 0 + α = α+ 0 = α

A4: ∀α ∈ S ∃(−α) ∈ S s.t. α+ (−α) = (−α) + α = 0

Axioms for Multiplication:

M1: ∀α, β ∈ S αβ = βα

M2: ∀α, β, γ ∈ S (αβ)γ = α(βγ)

M3: ∃1 ∈ S s.t. ∀α ∈ S 1α = α1 = α

M4: ∀α ∈ S∗ ∃α−1 ∈ S s.t. αα−1 = α−1α = 1

Distributivity:

D1: ∀α, β, γ ∈ S (α+ β)γ = αγ + βγ

Defn. A set S with addition & multiplication satisfying A1-A4, M1-M4 & D1 is a field if 1 6= 0.

Vector Spaces

Defn. A vector space over a field K is a set V with addition & scalar multiplication, so
∀v,w ∈ V ∃v + w ∈ V & ∀α ∈ K ∀v ∈ V ∃αv ∈ V

i) Addition Satisfies A1-A4

ii) α(v + w) = αv + αw

iii) (α+ β)v = αv + βv

iv) (αβ)v = α(βv)

v) 1v = v1 ∀v ∈ V


⇒

Deductions:

i) α0 = 0 ∀α ∈ K

ii) 0v = 0 ∀v ∈ V

iii) −(αv) = (−α)v = α(−v) ∀α ∈ K ∀v ∈ V

iv) If αv = 0 then α = 0 or v = 0
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Linear Independence, Spanning & Bases of Vector Spaces

Defn. Let V be a vector space overK, v1, . . . ,vn ∈ V the vectors are linearly independent if ∃α1, . . . αn ∈ K
not all 0 s.t. α1v1 + · · ·+ αnvn = 0, otherwise linearly dependent.

Lemma. If v1, . . . ,vn are linearly dependent, either v1 = 0 or vr is a linear combination of v1, . . . ,vr−1.

Pf. Trivial QED

Defn. v1, . . . ,vn span V if ∀v ∈ V ∃α1, . . . , αn s.t. α1v1 + · · ·+ αnvn = v

Defn. If v1, . . . ,vn span V & are linearly independent they form a basis of V .

Defn. The unique scalars that determine any given v ∈ V are called the coordinates of v.

Thm. The Basis Theorem: Suppose v1, . . . ,vm & w1, . . . ,wn are both bases of the vector space V , then
m = n.

Defn. The number of vectors n in a basis of the finite dimensional vector space V is called the dimension:
dim(V ) = n.

Sifting: Given v1, . . . ,vr ∈ V successively look at v1, . . . ,vr keep vi unless vi = 0 or vi is a linear
combination of v1, . . . ,vi−1.

Lemma. If v1, . . . ,vn,w span V & w is a linear combination of v1, . . . ,vn then v1, . . . ,vn span V .

Pf. w = α1v1 + · · ·+ αnvn now substitute w QED

Thm. Suppose v1, . . . ,vn span V then ∃ subsequence of vectors, a basis of V .

Pf. Sift v1, . . . ,vn QED

Thm. Suppose v1, . . . ,vn are linearly independent in V . We can extend this to a basis of V .

Pf. Add w1, . . . ,wm & sift out w’s. QED

Propn. The Exchange Lemma: Suppose v1, . . . ,vn span V & w1, . . . ,wm are linearly independent in
V then m ≤ n.

Pf. Place w1 infront of v1, . . . ,vn & sift removing at lest one vector. now repeat for wi removing at
lesat one vector each time. Hence m ≤ n. QED

Corly. If n vectors form a basis of V then n − 1 vectors cannot span V & n + 1 vectors cannot be
independent.

Pf. Of The Basis Theorem: Since vi’s span V & wj ’s are linearly independent n ≤ m by Exchange
Lemma. Since wj ’s span V & vi’s are linearly independent m ≤ n by Exchange Lemma. Hence n = m.
QED

Subspaces

Defn. A subspace of V is a non-empty subset W ⊂ V s.t. W is closed under addition & scalar multipli-
cation. i.e: u,v ∈W α, β ∈ K =⇒ αu + βv ∈W

Propn. If W1 & W2 are subspaces of V then so is W1 ∩W2

Pf. Trivial QED

Note. W1 ∪W2 not necessarily a subspace.

Defn. Let W1 & W2 be subspaces of V then W1 +W2 is defined to be v ∈ V s.t. v = w1 +w2 for some
w1 ∈W1 & w2 ∈W2 or W1 +W2 := {w1 + w2 : w1 ∈W1 w2 ∈W2}

Propn. W1 +W2 is the smallest subspace to contain W1 & W2.

Pf. Any subspace of V containing W1 & W2 must contain W1 +W2 QED
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At this point we drop bold face notation for vectors

Thm. If V is a finite dimensional vector space & W1,W2 subspaces of V then:

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2)

Pf. Let dim(W1+W2) = r & e1, . . . , er be a basis of W1∩W2. Extend this to e1, . . . , er, f1, . . . , fs to be a
basis of W1 s.t. dim(W1) = r+s. Also extend to e1, . . . , er, g1, . . . , gt to be a basis of W2 s.t. dim(W2) =
r + t
∀w1 ∈W1, w1 = α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs
∀w2 ∈W2, w2 = γ1e1 + · · ·+ γrer + δ1g1 + · · ·+ δtgt
hence w1 + w2 = (α1 + γ1)e1 + · · · + (αr + γr)er + β1f1 + · · · + βsfs + δ1g1 + · · · + δtgt ∈ W1 + W2 so
ei, fj , gk span W1 +W2

Suppose: α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs + γ1g1 + · · ·+ γtgt = 0
then α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = −γ1g1 − · · · − γtgt, s.t. LHS ∈W1, RHS ∈W2

=⇒ both ∈W1 ∩W2 with basis ei.
Now −γ1g1 − · · · − γtgt = δ1e1 + · · ·+ δrer i.e: δ1e1 + · · ·+ δrer + γ1g1 + · · ·+ γtgt = 0
ei, gk basis of W2 =⇒ all δ’s & γ’s = 0 leaving α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = 0
ei, fj basis of W1 =⇒ all α’s & β’s = 0 so ei, fj , gk are linearly independent, hence ei, fj , gk are a basis
of W1 +W2, hence

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2)

QED

Propn. v1, . . . , vn ∈ V all linear combinations form a subspace of V .

Pf. Trivial QED

Defn. W1,W2 subspaces of V are complementary if W1 ∩W2 = {0} & W1 ∪W2 = V .

Propn. W1,W2 subspaces of V , W1 & W2 are complementary ⇐⇒ v ∈ V can be written uniquely as
v = w1 + w2 where w1 ∈W1 & w2 ∈W2.

Pf. “ =⇒ ” SupposeW1,W2 complementary thenW1+W2 = V so can find w1 ∈W1 & w2 ∈W2 s.t. v = w1 + w2

suppose w′1 ∈W1 & w′2 ∈W2 s.t. v = w′1 + w′2 now w1 + w2 = w′1 + w′2, w1 − w′1 = w′2 − w2 LHS ∈W1

RHS ∈W2 hence both ∈W1 ∩W2 but W1 ∩W2 = {0} hence w1 = w′1 & w2 = w′2.
“ ⇐= ” Suppose every v ∈ V can be uniquely written v = w1 + w2, with w1 ∈ W1 w2 ∈ W2

(Obv.) W1 + W2 = V . If 0 6= v ∈ W1 ∩ W2 then v = v + 0, v ∈ W1 v = 0 + v, v ∈ W2. Hence
W1 ∩W2 = {0} =⇒ W1,W2 complementary. QED

Linear Transformations

Defn. Let U & V be vector spaces over K, a linear transformation or linear map T from U to V is a
function T : U → V s.t. T (αu1 + βu2) = αT (u1) + βT (u2) ∀u1, u2 ∈ U & ∀α, β ∈ K

Lemma. i) T (0U ) = 0V

ii) T (−u) = −T (u)

Pf. i) T (0U ) = T (0U + 0U ) = T (0U ) + T (0U ) =⇒ T (0U ) = 0V

ii) T ((−1)u) = (−1)T (u)
QED

Propn. Let U, V be vector spaces over K, u1, . . . , un ∈ U basis v1, . . . , vn ∈ V then ∃!T s.t. T : U → V
linear map with T (ui) = vi.

Pf. Let u ∈ U then u = α1u1 + · · ·+αnun so T (u) = T (α1u1 + · · ·+αnun) = α1v1 + · · ·+αnvn = v ∈ V
hence T is uniquely determined. QED
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Defn. Let T : U → V be a linear map. The image of T Im(T ) is the set of vectors v ∈ V s.t. v = T (u)
for some u ∈ U . The kernel of T ker(T ) is the set of vectors u ∈ U s.t. T (u) = 0V .

Im(T ) := {T (u) : u ∈ U}, ker(T ) := {u ∈ U : T (u) = 0V }

Propn. Let T : U → V be a linear map, then Im(T ) is a subspace of V & ker(T ) is a subspace of U .

Pf. αv1+βv2 = αT (u2)+βT (u2) = T (αu1)+T (βu2) = T (αu1+βu2) ∈ Im(T ) for u1, u2 ∈ U &α, β ∈ K
T (αu1 + βu2) = T (αu1) + T (βu2) = αT (u1) + βT (u2) = α0V + β0V = 0V where αu1 + βu2 ∈ ker(T )
QED

Defn. Let T : U → V be a linear map dim(Im(T )) is called the rank, dim(ker(T )) is called the nullity.

Thm. Rank-Nullity Theorem: Let U, V be vector spaces over K with U finite dimensional. Let T : U → V
be a linear map. Then

rank(T ) + null(T ) = dim(U)

Pf. Since ker(T ) is a subspace of U (Both finite dimensional). Let null(T ) = s & e1, . . . , es be a basis of
ker(T ). Now extend to a basis of U : e1, . . . , es, f1, . . . , fr. Now dim(U) = s+r. T (e1), . . . , T (es), T (f1), . . . , T (fr)
span Im(T ) & since T (e1), . . . , T (es) all = 0V then T (f1), . . . , T (fr) span Im(T ).
Suppose α1T (f1) + · · ·+αrT (fr) = 0V then T (α1f1 + · · ·+αrfr) = 0V so α1f1 + · · ·+αrfr ∈ ker(T ) but
e1, . . . , es is a basis of ker(T ) hence ∃βj ∈ K s.t. α1f1 + · · ·+αrfr = β1e1 + · · ·+ βses =⇒ α1f1 + · · ·+
αrfr − β1e1− · · · − βses = 0U but e1, . . . , es, f1, . . . , fr is a basis of U hence αi, βj = 0 ∀i =⇒ f1, . . . , fr
linearly independent, hence f1, . . . , fr is a basis of Im(T ) hence rank(T ) + null(T ) = r + s = dim(U)

QED

Corly. Let T : U → V be a linear map where dim(U) = dim(V ) = n. Then the following properties of
T are equivalent:

1. T is surjective.

2. rank(T ) = n

3. null(T ) = 0

4. T is injective.

5. T is bijective.

Pf. (i) =⇒ Im(T ) = V =⇒ rank(T ) = dim(V ) = n =⇒ (ii)
(ii) =⇒ Im(T ) subspace of V dimension n =⇒ Im(T ) = V =⇒ (i)
(ii) =⇒ dim(U) = n = rank(T ) + null(T ) =⇒ (T ) = 0 =⇒ (iii)
(iii) =⇒ ker(T ) = {0V } T (u1) = T (u2) =⇒ T (u1− u2) = 0V =⇒ u1− u2 ∈ ker(T ) = {0V } =⇒ u1 =
u2 =⇒ (iv)
(iv) =⇒ (iii)
finally (i)&(iv)⇐⇒ (v) QED

Defn. If the above is satisfied then T is called non-singular, otherwise singular.

Defn. Addition & Scalar multiplication of linear maps: Let T1 : U → V & T2 : U → V then define
αT1 + βT2 : U → V to be (αT1 + βT2)(u) = αT1(u) + βT2(u) ∀α, β ∈ K ∀u ∈ U

Defn. Composition of linear maps: Let T1 : U → V & T2 : V → W then define T2 ◦ T1 : U → W to be
(T2 ◦ T1)(u) = T2(T1(u)) ∀u ∈ U
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Linear Transformations & Matrices

Let T : U → V be a linear map, where dim(U) = n & dim(V ) =, & e1, . . . , en is a basis of U & f1, . . . , fm
a basis V . Now

T (e1) = α11f1 + α21f2 + · · ·+ αm1fm

T (e2) = α12f1 + α22f2 + · · ·+ αm2fm
...

...

T (en) = α1nf1 + α2nf2 + · · ·+ αmnfm
...

with αij ∈ K (1)

or T (ej) =
∑m
i=1 αijfi for 1 ≤ j ≤ n & A = (αij) is the matrix of the linear map T . This can be written[

T
]e
f

= A

Thm. Let U, V be vector spaces over K of dimensions n,m respectively. For a giver choice of bases of
U & V there is a one to one correspondence between the set HomK(U, V ) of linear maps U → V & the
set Km×n of m× n matrices over K.

Pf. Use the above formulation QED

Propn. Let T : U → V be a linear map. Let A = (αij) represent T wrt given bases of U & V . Then
T (u) = v ⇐⇒ Au = v for u ∈ U & v ∈ V .

Pf. T (u) = T
(∑n

j=1 λjej

)
=
∑n
j=1 λjT (ej) =

∑n
j=1 λj (

∑m
i=1 αijfi) =

∑m
i=1

 n∑
j=1

αijλj


︸ ︷︷ ︸

=∗

fi =
∑m
i=1 µi︸︷︷︸

∗=

fi

QED

Propn. Let T1, T2 : U → V be linear maps & A & B the respective matrices (& wrt the same bases).
Then αT1 + βT2 has matrix αA+ βB.

Pf. Trivial QED

Thm. Let T1 : V → W be a linear map with `×m matrix A = (αij) & let T2 : U → V be a linear map
with m× n matrix B = (βij). Then the composite map T1 ◦ T2 has matrix AB.

Pf. Similar to Pf of T (u) = v ⇐⇒ Au = v but T1(T2(u)) = ABu QED

Elementary Operations & Rank of a Matrix

Elementary Row Operations:

(R1) For i 6= j add a multiple of rj to ri (ri, rj are rows).

(R2) Interchange two rows.

(R3) Multiply a row by a non-zero scalar.

Defn. A matrix satisfying:

i) All zero rows below all non-zero rows.

ii) Let r1, . . . , rs be the non-zero rows, then all ri has a 1 as its first entry.

iii) The first non-zero entry of each row is strictly to the right og the first non-zero entry of the row
above.

iv) If row i is non-zero all entries below the first non-zero element are zero.

is said to be in upper echelon form.
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Defn. A matrix in upper echelon form satisfying:

v) If row i is non-zero then all entries above and below the first non-zero element are zero.

is said to be in row reduced form.

Thm. Every matrix can be brought to row reduced form by elementary row operations.

Pf. Algorithm:

1) If αij & all entries below are zero move one place to the right (i, j + 1) & goto (1) unless j = n

2) If αij = 0 but not all entries below are, apply (R2) to exchange rows.

3) If αij 6= 1 apply (R3) using α−1ij .

4) Now apply (R1) s.t. all entries above & below that every entry are zero.

5) Move down one & right one (i+ 1, j + 1) unless i = m or j = n. QED

Elementary Column Operations:

(C1) For i 6= j adda multiple of cj to ci (ci, cj are columns).

(C2) Interchange two columns.

(C3) Multiply a column by a non-zero scalar.

Thm. By applying elementary row & column operations a matrix can be brought into the form(
Is 0s,n−s

0m−s,s 0m−s,n−s

)
.

Pf. Row reduce & use column operations. QED

Defn. A matrix in the above format is said to be in Smith normal form.

Lemma. Let T : U → V be a linear map & e1, . . . , en a basis of U then the rank of T is the largest
independent subset of T (e1), dots, T (en).

Defn. 1) The row space of A is the subspace of Kn spanned by the rows of A. The row rank is the
dimension of the row space.

2) The column space of A is the subspace of Kn spanned by the columns of A. The column rank is
the dimension of the column space.

Thm. Suppose the linear map T has matrix A then rank(T ) = column rank(A)

Pf. Use above lemma. QED

Thm. Applying elementary row operations of elementary column operations does not change the row &
column rank.

Pf. Obviousness. QED

Corly. The number of non-zero rows in the Smith normal form of a matrix A is equal to both the row
& column rank.

Pf. Elementary row & column operations don’t change row or column ranks so:

row rank(A) = row rank(Smith normal form of A) = s = column rank(Smith normal form of A) = column rank(A)

QED

Corly. The rank of a matrix A is equal to the number of rows that are non-zero in upper echelon form

Pf. Non-zero rows in upper echelon form are linearly independent. QED

Thm. Let A be the augmented n× (m+ 1) matrix of a linear system. Let B be the matrix obtained from
A by removing the last column. The system of equations have a solution ⇐⇒ rank(A) = rank(B)
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The inverse of a Linear Transformation & of a Matrix

Defn. Let T : U → V be a linear transformation with corresponding matrix A (m×n). If ∃T−1 : V → U
with TT−1 = IV & T−1T = IU then T is said to be invertible & T−1 is called the inverse.
If so, A−1 is the (n×m) matrix & AA−1 = Im & A−1A = In, then A is said to be invertible & A−1 is
called the inverse.

Lemma. Let A be a matrix of a linear map T . T is invertible ⇐⇒ A is invertible. T−1 & A−1 are
unique.

Pf. Bijection between matrices & linear mpas. QED

Thm. A linear map T is invertible ⇐⇒ T is non-singular. In particular if T is invertible then m = n
so only square matrices are invertible.

Pf. Map required to be injective so is inverse, hence bijection etc. QED

Propn. The row reduced form of an invertible n× n matrix A is In

Elementary matrices:

• E(n)1λ,i,j (i 6= j) n×n matrix like the identity butt with a non-zero entry λ in the (i, j)th position.

• E(n)2i,j Like the n× n identity with ith & jth rows interchanged.

• E(n)3λ,i (λ 6= 0) like the n× n identity λ in the (i, i)th position.

Thm. An invertible matrix is a product of elementary matrices.

Thm. Let A be an n× n matrix:

i) The homogeneous system ax = 0 has a non-trivial solution ⇐⇒ A is singular.

ii) The system Ax = b has a unique solution ⇐⇒ A is non-singular.

Pf. i) The solution is nullspace(A) if T corresponds to A nullspace(T ) = ker(T ) = {0} ⇐⇒
null(T ) = 0 ⇐⇒ T non-singular gives no solutions hence require A singular.

ii) If A singular then its nullity> 0 so nullspace(A) 6= {0} =⇒ no solutions OR solutions are
x+nullspace(A) hence not unique.

QED

The Determinant of a Matrix

Defn. A permutation φ is said to be even if it is a composition of an even number of transpositions &
sign(φ) = +1 & odd if a composition of an odd number of transpositions & sign(φ) = −1.

Defn. The determinant of an n× n matrix A = (αij) is the scalar quantity

det(A) :=
∑
φ∈Sn

sign(φ)α1φ(1) · · ·αnφ(n)

Thm. Elementary row operations affect the determinant as follows:

i) det(In) = 1.

ii) Applying (R2) changes the determinants sign.

iii) If A has two equal rows det(A) = 0.

iv) Applying (R1) does not change the determinant.

v) Applying (R3) multiplies the determinant by λ.

7



Pf. i) αij = 0 ∀i 6= j so only identity permutation is non-zero det(I) = α11 · · ·αnn = 1.

ii) det(B) =
∑
φ∈Sn

sign(φ)β1φ(1) · · ·βnφ(n) let ϕ = φ ◦ (i, j) now sign(ϕ) = − sign(φ) hence =∑
ϕ∈Sn

− sign(φ)α1ϕ(1) · · ·αnϕ(n) = −det(A).

iii) Use part (ii) & swap rows that are the same now det(A) = −det(A) =⇒ det(A) = 0.

iv)

det(B) =
∑
φ∈Sn

sign(φ)α1φ(1) · · · (αiφ(i) + λαjφ(j)) · · ·αnφ(n)

=
∑
φ∈Sn

sign(φ)α1φ(1) · · ·αnφ(n) + λ
∑
φ∈Sn

sign(φ)α1φ(1) · · ·αjφ(j)αjφ(j) · · ·αnφ(n)

Second term = 0 since αjφ(j) repeated is the same as two equal rows.

v) det(B) =
∑
φ∈Sn

sign(φ)α1φ(1) · · ·λαiφ(i) · · ·αnφ(n) = λ
∑
φ∈Sn

sign(φ)α1φ(1) · · ·αnφ(n) = λ det(A)
QED

Defn. A matrix is upper triangular if all entries below the leading diagonal are zero.

Corly. The determinant of an upper triangular matrix is the product of its diagonal entries.

Defn. Let A = (αij) be an m × n matrix. Define the transpose AT of A to be the n × m matrix
(βij) = (αji).

Thm. Let A = (αij) be an n× n matrix, then det(AT ) = det(A).

Pf.

det(AT ) =
∑
φ∈Sn

sign(φ)β1φ(1) · · ·βnφ(n)

=
∑
φ∈Sn

sign(φ)αφ(1)1 · · ·αφ(n)n

=
∑
φ∈Sn

sign(φ)α1φ(1) · · ·αnφ(n)

= det(A)

QED

Corly. Elementary column operations affect the determinant as row operations do.

Thm. An n× n matrix A has det(A) = 0 ⇐⇒ A is singular.

Pf. Row reduce A to obtain A′, det(A) = 0 ⇐⇒ det(A′) = 0, A′ is upper triangular hence det(A) =
0 ⇐⇒ one diagonal entry is 0 ⇐⇒ A′ has a zero row ⇐⇒ row rank(A) < n ⇐⇒ A is singular.

Lemma. If E is an elementary matrix & B any matrix both n× n then det(EB) = det(E) det(B).

Pf. det(E1) = 1, det(E2) = −1, det(E3) = λ & consider row operations. QED

Thm. For any two n× n matrices A & B: det(AB) = det(A) det(B).

Pf. det(AB) = det(E1) det(E2 · · ·EnB) = det(E1) · · · det(En) det(B) = det(E1 · · ·En) det(B)
= det(A) det(B) QED

Defn. Let A = (aij) be an n×n matrix. Let Aij be the matrix (n−1)× (n−1) obtained by eliminating
the ith row & jth column of A. Mij = det(Aij) is called the (i, j)th minor of A.

Defn. cij = (−1)i+jMij = (−1)i+j det(Aij) is called the (i, j)th cofactor of A.

Thm. Let A be an n× n matrix.
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i) Expansion by ith row: det(A) = αi1ci1 + · · ·+ αincin =
∑n
j=1 αijcij.

ii) Expansion by jth column: det(A) = α1jc1j + · · ·+ αnjcnj =
∑n
i=1 αijcij.

Pf. ∑
φ ∈ Sn
φ(n) = n

sign(φ)α1φ(1) · · ·αnφ(n) =
∑

φ∈Sn−1

sign(φ)α1φ(1) · · ·αn−1φ(n−1)

now det(B) = βnnNnn = (−1)i+jαijMij = αijcij hence det(A) =
∑
αijcij for fixed i or j. QED

Defn. Let A be an n× n matrix. Define the adjugate of A, adj(A), to be the n× n matrix with (i, j)th

element the cofactor cji. i.e: the transpose of the matrix of cofactors.

Thm. Aadj(A) = det(A)In = adj(A)A

Pf. A = (αij) adj(A) = (cij) so Aadj(A) =
(∑n

j=1 αijckj

)
. If k 6= i

∑n
j=1 αijckj = 0 hence

Aadj(A) = det(A)In QED

Corly. If det(A) 6= 0 then A−1 = 1
det(A)adj(A).

Change of Basis & Equivalent Matrices

Propn. The change of basis matrix is invertible. i.e: if P is the change of basis matrix from ei’s to e′i’s
& Q is the change of basis ,matrix from e′i’s to ei’s then P = Q−1.

Pf. Consider IU : U → U → U where the first & last spaces use the same bases =⇒ PQ = In =⇒
P = Q−1 QED

Propn. Pv = v′ where v = α1e1 + · · ·+ αnen & v′ = β1e
′
1 + · · ·+ βne

′
n.

Pf. Obviousness QED

Thm. Let T : U → V be a linear map e, e′ bases of U , f, f ′ bases of V

P = [IdU ]
e
e′ Q = [IdV ]

f
f ′ A = [T ]

e
f B = [T ]

e′

f ′

Then B = QAP−1.

Pf. e
P−→ e′

B−→ f ′ hence BP e
A−→ f

Q−→ f ′ hence QA =⇒ BP = QA QED

Defn. A&B m× n matrices are equivalent iff there are invertible matrices P n× n matrix & Q m×m
matrix s.t. B = QAP .

Thm. Let A&B be m× n matrices over K the following conditions are equivalent:

i) A&B are equivalent.

ii) A&B represent the same linear map wrt. different bases.

iii) A&B have the same rank.

iv) B can be obtained from A using elementary row & column operations.

Pf. (i)⇐⇒ (ii) by the previous Thm.
(ii) =⇒ (iii) Since A&B represent the same linear map rank(A) = rank(T ) = rank(B).
(iii) =⇒ (iv) Both A&B have rank s so can be brought to Smith normal form by elementary row &
column operations. i.e: A↔ S.N.F.↔ B
(iv) =⇒ (i) B = RrRr−1 · · ·R1AC1C2 · · ·Cs where Ri & Ci are row & column operation elementary
matrices, hence B = QAP QED
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Similar Matrices, Eigenvectors & Eigenvalues

Defn. Two n× n matrices over K are said to be similar if ∃ an n× n matrix P which is invertible with
B = P−1AP .

Defn. A matrix similar to a diagonal matrix is said to be diagonalisable.

Defn. Let T : V → V be a linear map where V is a vector space over K. Suppose v ∈ V non-zero & some
λ ∈ K we have T (v) = λv. Then v is called an eigenvector of T & λ an eigenvalue of T corresponding
to v.

Defn. Let A be an n × n matrix over K. Suppose some non-zero vector v & scalar λ ∈ K satisfy
Av = λv. Then v is called an eigenvector of A & λ an eigenvalue of A corresponding to v.

Thm. Let A be an n× n matrix. Then λ is an eigenvalue ⇐⇒ det(A− λIn) = 0.

Pf. “ =⇒ ” Av = λv so Av = λInv, (A− λIn)v = 0 for a solution det(A− λIn) = 0.
“⇐=” det(A− λIn) = 0 then A− λIn is singular, so has solutions =⇒ ∃x s.t. Av = λv. QED

Defn. For an n× n matrix A the equation det(A− λx) = 0 is called the characteristic equation of A &
det(A− λx) is called the characteristic polynomial.

Thm. Similar matrices have the same characteristic equation & hence the same eigenvalues.

Pf. Let A&B be similar hence B = P−1AP for some P
det(B − xIn) = det(P−1AP − xIn) = det(P−1(A− xIn)P ) = det(P−1) det(A− xIn) det(P )
= det(P−1) det(P ) det(A− xIn) = det(A− xIn) QED

Propn. Suppose A is upper triangular, the eigenvalues are just αii.

Pf. det(A− xIn) = (α11 − x) · · · (αnn − x) = 0 QED

Thm. Let T : V → V be a linear map, the matrix of T is diagonal wrt. to some basis of V ⇐⇒ V has
a basis consisting of eigenvectors of T .
Equivalently: Let A be an n× n matrix over K. Then A is similar to a diagonal matrix ⇐⇒ Kn has
a basis of eigenvectors of A.

Pf. “ =⇒ ” Suppose A = (αij) is diagonal wrt. a basis of V hence T (ei) = αiiei so each ei is an
eigenvector.
“⇐=” Suppose ei’s are a basis of V consisting of eigenvectors, so T (ei) = λei for some λi ∈ K so the
matrix A = (αij) with αii = λi.

Thm. Let λ1, . . . , λr be distinct eigenvalues with v1, . . . , vr eigenvectors then v1, . . . , vr are linearly in-
dependent.

Pf. Induction on r. QED

Corly. If A has distinct eigenvalues it is diagonalisable.

Defn. The scalar product of two vectors v = (α1, . . . , αn) & w = (β1, . . . , βn) in Rn is defined to be
v · w =

∑n
i=1 αiβi.

Defn. A basis b1, . . . , bn is called orthonormal if bi · bi = 1 ∀i & bi · bj = 0 ∀i 6= j.

Defn. An n× n matrix A is said to be symmetric if AT = A.

Defn. An n× n matrix A is said to be orthogonal if AT = A−1 or indeed AAT = ATA = In.

Propn. An n× n matrix A over R is orthogonal
⇐⇒ the rows r1, . . . , rn form an orthonormal basis of Rn
⇐⇒ the columns c1, . . . , cn form an orthonormal basis of Rn.

Pf. Orthogonal matrix A is invertible hence row & column ranks are n & hence the rows & columns
form bases. ATA = In =⇒ ri · ri = 1 ∀i & ri · rj = 0 ∀i 6= j. Similarly for the converse. QED
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Propn. Let A be a real symmetric matrix then A has a n eigenvalue in R & all complex eigenvalues of
A are in R.

Pf. det(A−λIn) ∈ R[λ]deg=n Av = λv & Av̄ = λ̄v̄ (since Ā = A). Also, AT = A so vTAT = vTA = λvT

so
(vTA)v̄ = λvT v̄
vT (Av̄) = vT λ̄v̄

}
=⇒ λvT v̄ = λ̄vT v̄ =⇒ (λ− λ̄)vT v̄ = 0 since vT v̄ 6= 0 =⇒ λ = λ̄ hence λ ∈ R

QED

Propn. Let A be a real symmetric matrix & let λ1, λ2 be two distinct eigenvalues v1, v2 then v1 · v2 = 0.

Pf. Av1 = λ1v1 & Av2 = λ2v2 since vT1 A
T = λ1v

T
1 , vT1 Av2 = λ1v

T
1 v2

& similarly vT2 Av1 = λvT2 v1 = λ2v
T
2 v1 =⇒ vT1 Av2 = λ2v

T
1 v2

∴ (λ2 − λ1)vT1 v2 = 0 since λ2 − λ1 6= 0 v1 · v2 = 0 QED

Thm. Let A be a real symmetric matrix. ∃ a real orthogonal matrix P with P−1AP = PTAP diagonal.

Pf. (Case of distinct eigenvalues only) λi ∈ R eigenvalues =⇒ vi ∈ Rn eigenvectors vi · vj = vTi vj = 0
for i 6= j since vi 6= 0 vi · vi = αi > 0 so replacing each vi with vi/

√
αi we know vi · vi = 1 ∀i. All the vi

are independent & form a basis (orthogonal). But P−1AP is the diagonal matrix with entries λ1, . . . , λn.

QED
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