Linear Algebra

Jack Betteridge

24/3/13

Axioms for Number Systems

Let S be a number system $(S, +, \times)$ <u>Axioms for Addition</u>: A1: $\forall \alpha, \beta \in S \quad \alpha + \beta = \beta + \alpha$ A2: $\forall \alpha, \beta, \gamma \in S \quad (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ A3: $\exists 0 \in S \ s.t. \ \forall \alpha \in S \quad 0 + \alpha = \alpha + 0 = \alpha$ A4: $\forall \alpha \in S \ \exists (-\alpha) \in S \ s.t. \ \alpha + (-\alpha) = (-\alpha) + \alpha = 0$ <u>A4:</u> $\forall \alpha, \beta \in S \ \exists (-\alpha) \in S \ s.t. \ \alpha + (-\alpha) = (-\alpha) + \alpha = 0$ <u>Axioms for Multiplication</u>: M1: $\forall \alpha, \beta \in S \quad \alpha\beta = \beta\alpha$ M2: $\forall \alpha, \beta, \gamma \in S \quad (\alpha\beta)\gamma = \alpha(\beta\gamma)$ M3: $\exists 1 \in S \ s.t. \ \forall \alpha \in S \quad 1\alpha = \alpha 1 = \alpha$

M4: $\forall \alpha \in S^* \exists \alpha^{-1} \in S \ s.t. \ \alpha \alpha^{-1} = \alpha^{-1} \alpha = 1$

Distributivity:

D1: $\forall \alpha, \beta, \gamma \in S \quad (\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$

Def^{<u>n</u>}. A set S with addition & multiplication satisfying A1-A4, M1-M4 & D1 is a <u>field</u> if $1 \neq 0$.

Vector Spaces

Def^{<u>n</u>}. A vector space over a field K is a set V with addition & scalar multiplication, so $\forall v, w \in V \exists v + w \in V \& \forall \alpha \in K \forall v \in V \exists \alpha v \in V$

i) Addition Satisfies A1-A4 ii) $\alpha(\boldsymbol{v} + \boldsymbol{w}) = \alpha \boldsymbol{v} + \alpha \boldsymbol{w}$ iii) $(\alpha + \beta)\boldsymbol{v} = \alpha \boldsymbol{v} + \beta \boldsymbol{v}$ iv) $(\alpha\beta)\boldsymbol{v} = \alpha(\beta\boldsymbol{v})$ v) $1\boldsymbol{v} = \boldsymbol{v}1 \ \forall \boldsymbol{v} \in V$ iv) $1\boldsymbol{v} = \boldsymbol{v}1 \ \forall \boldsymbol{v} \in V$ iv) If $\alpha \boldsymbol{v} = \boldsymbol{0}$ then $\alpha = 0$ or $\boldsymbol{v} = \boldsymbol{0}$

Linear Independence, Spanning & Bases of Vector Spaces

Def^{<u>n</u>}. Let V be a vector space over $K, v_1, \ldots, v_n \in V$ the vectors are linearly independent if $\exists \alpha_1, \ldots, \alpha_n \in K$ not all 0 s.t. $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$, otherwise linearly dependent.

Lemma. If v_1, \ldots, v_n are linearly dependent, either $v_1 = 0$ or v_r is a linear combination of v_1, \ldots, v_{r-1} . P_r^{f} . Trivial

Def^{<u>n</u>}. v_1, \ldots, v_n span V if $\forall v \in V \exists \alpha_1, \ldots, \alpha_n$ s.t. $\alpha_1 v_1 + \cdots + \alpha_n v_n = v$

Def^{<u>n</u>}. If v_1, \ldots, v_n span V & are linearly independent they form a <u>basis</u> of V.

Def^{<u>n</u>}. The unique scalars that determine any given $v \in V$ are called the <u>coordinates</u> of v.

Th^m. <u>The Basis Theorem</u>: Suppose $v_1, \ldots, v_m \notin w_1, \ldots, w_n$ are both bases of the vector space V, then m = n.

Def^{<u>n</u>}. The number of vectors n in a basis of the finite dimensional vector space V is called the <u>dimension</u>: dim(V) = n.

Sifting: Given $v_1, \ldots, v_r \in V$ successively look at v_1, \ldots, v_r keep v_i unless $v_i = 0$ or v_i is a linear combination of v_1, \ldots, v_{i-1} .

Lemma. If v_1, \ldots, v_n we span $V \in w$ is a linear combination of v_1, \ldots, v_n then v_1, \ldots, v_n span V.

 P_{-}^{f} . $\boldsymbol{w} = \alpha_1 \boldsymbol{v}_1 + \dots + \alpha_n \boldsymbol{v}_n$ now substitute \boldsymbol{w}

Th^{$\underline{\mathbf{m}}$}. Suppose v_1, \ldots, v_n span V then \exists subsequence of vectors, a basis of V.

 P_{-}^{f} . Sift $\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{n}$

Th^m. Suppose v_1, \ldots, v_n are linearly independent in V. We can extend this to a basis of V.

 $P^{\underline{f}}$. Add $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_m$ & sift out \boldsymbol{w} 's.

Prop^{**n**}. <u>The Exchange Lemma</u>: Suppose v_1, \ldots, v_n span $V \notin w_1, \ldots, w_m$ are linearly independent in V then $m \leq n$.

 P_{-}^{f} . Place w_1 infront of v_1, \ldots, v_n & sift removing at less one vector. now repeat for w_i removing at less one vector each time. Hence $m \leq n$. QED

Cor^{<u>ly</u>}. If n vectors form a basis of V then n - 1 vectors cannot span V \mathcal{E} n + 1 vectors cannot be independent.

 $P^{\underline{f}}$. Of <u>The Basis Theorem</u>: Since v_i 's span $V \& w_j$'s are linearly independent $n \leq m$ by Exchange Lemma. Since w_j 's span $V \& v_i$'s are linearly independent $m \leq n$ by Exchange Lemma. Hence n = m. QED

Subspaces

Def^{<u>n</u>}. A subspace of V is a non-empty subset $W \subset V$ s.t. W is closed under addition & scalar multiplication. i.e. $u, v \in W \ \alpha, \beta \in K \implies \alpha u + \beta v \in W$

Prop^{<u>n</u>}. If $W_1 \notin W_2$ are subspaces of V then so is $W_1 \cap W_2$

 $P^{\underline{f}}$. Trivial

Note. $W_1 \cup W_2$ not necessarily a subspace.

Def^{<u>n</u>}. Let $W_1 \& W_2$ be subspaces of V then $W_1 + W_2$ is defined to be $\boldsymbol{v} \in V$ s.t. $\boldsymbol{v} = \boldsymbol{w}_1 + \boldsymbol{w}_2$ for some $\boldsymbol{w}_1 \in W_1 \& \boldsymbol{w}_2 \in W_2$ or $W_1 + W_2 := \{\boldsymbol{w}_1 + \boldsymbol{w}_2 : \boldsymbol{w}_1 \in W_1 \& \boldsymbol{w}_2 \in W_2\}$

Prop^{<u>n</u>}. $W_1 + W_2$ is the smallest subspace to contain $W_1 \notin W_2$.

 P_{-}^{f} . Any subspace of V containing $W_1 \& W_2$ must contain $W_1 + W_2$ QED

QED

QED

QED

At this point we drop bold face notation for vectors

Th^m. If V is a finite dimensional vector space \mathcal{B} W₁, W₂ subspaces of V then:

 $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$

$$\begin{split} P^{\underline{f}}. \mbox{ Let } \dim(W_1+W_2) &= r \ \& \ e_1, \dots, e_r \ be \ a \ basis \ of \ W_1 \cap W_2. \ Extend \ this \ to \ e_1, \dots, e_r, f_1, \dots, f_s \ to \ be \ a \ basis \ of \ W_1 \ s.t. \ \dim(W_1) &= r+s. \ Also \ extend \ to \ e_1, \dots, e_r, g_1, \dots, g_t \ to \ be \ a \ basis \ of \ W_2 \ s.t. \ \dim(W_2) &= r+t \\ \forall w_1 \in W_1, \ w_1 &= \alpha_1 e_1 + \dots + \alpha_r e_r + \beta_1 f_1 + \dots + \beta_s f_s \\ \forall w_2 \in W_2, \ w_2 &= \gamma_1 e_1 + \dots + \gamma_r e_r + \delta_1 g_1 + \dots + \delta_t g_t \\ hence \ w_1 + w_2 &= (\alpha_1 + \gamma_1) e_1 + \dots + (\alpha_r + \gamma_r) e_r + \beta_1 f_1 + \dots + \beta_s f_s + \delta_1 g_1 + \dots + \delta_t g_t \in W_1 + W_2 \ so \ e_i, f_j, g_k \ span \ W_1 + W_2 \\ Suppose: \ \alpha_1 e_1 + \dots + \alpha_r e_r + \beta_1 f_1 + \dots + \beta_s f_s + \gamma_1 g_1 + \dots + \gamma_t g_t = 0 \\ then \ \alpha_1 e_1 + \dots + \alpha_r e_r + \beta_1 f_1 + \dots + \beta_s f_s = -\gamma_1 g_1 - \dots - \gamma_t g_t, \ s.t. \ LHS \in W_1, \ RHS \in W_2 \\ \Longrightarrow \ both \ \in W_1 \cap W_2 \ with \ basis \ e_i. \\ Now \ -\gamma_1 g_1 - \dots - \gamma_t g_t = \delta_1 e_1 + \dots + \delta_r e_r \ i.e: \ \delta_1 e_1 + \dots + \delta_r e_r + \gamma_1 g_1 + \dots + \gamma_t g_t = 0 \\ e_i, g_k \ basis \ of \ W_2 \ \Longrightarrow \ all \ \delta^c s \ \& \ \gamma^c s = 0 \ leaving \ \alpha_1 e_1 + \dots + \alpha_r e_r + \beta_1 f_1 + \dots + \beta_s f_s = 0 \\ e_i, f_j \ basis \ of \ W_1 \ \Longrightarrow \ all \ \alpha^c s \ \& \ \beta^c s = 0 \ so \ e_i, f_j, g_k \ are \ linearly \ independent, \ hence \ e_i, f_j, g_k \ are \ a \ basis \ of \ W_1 + W_2, \ hence \end{split}$$

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

QED

QED

Prop^{**n**}. $v_1, \ldots, v_n \in V$ all linear combinations form a subspace of V.

 P^{f}_{-} . Trivial

Def^{<u>n</u>}. W_1, W_2 subspaces of V are complementary if $W_1 \cap W_2 = \{0\}$ & $W_1 \cup W_2 = V$.

Prop^{**n**}. W_1, W_2 subspaces of $V, W_1 \notin W_2$ are complementary $\iff v \in V$ can be written uniquely as $v = w_1 + w_2$ where $w_1 \in W_1 \notin w_2 \in W_2$.

 $\begin{array}{l} P_{2}^{f}. \ `` \Longrightarrow `` Suppose W_{1}, W_{2} \text{ complementary then } W_{1}+W_{2}=V \text{ so can find } w_{1} \in W_{1} \& w_{2} \in W_{2} \ s.t. \ v=w_{1}+w_{2} \\ \text{suppose } w_{1}' \in W_{1} \& w_{2}' \in W_{2} \ s.t. \ v=w_{1}'+w_{2}' \ \text{now } w_{1}+w_{2}=w_{1}'+w_{2}', \ w_{1}-w_{1}'=w_{2}'-w_{2} \ LHS \in W_{1} \\ RHS \in W_{2} \ \text{hence both } \in W_{1} \cap W_{2} \ \text{but } W_{1} \cap W_{2} = \{0\} \ \text{hence } w_{1}=w_{1}' \& w_{2}=w_{2}'. \\ `` \Leftarrow `` \ Suppose \ \text{every } v \in V \ \text{can be uniquely written } v=w_{1}+w_{2}, \ \text{with } w_{1} \in W_{1} \ w_{2} \in W_{2} \\ (\text{Obv.}) \ W_{1}+W_{2}=V. \ \text{If } 0 \neq v \in W_{1} \cap W_{2} \ \text{then } v=v+0, \ v \in W_{1} \ v=0+v, \ v \in W_{2}. \ \text{Hence } \\ W_{1} \cap W_{2} = \{0\} \implies W_{1}, W_{2} \ \text{complementary}. \end{aligned}$

Linear Transformations

Def^{<u>n</u>}. Let U & V be vector spaces over K, a linear transformation or linear map T from U to V is a function $T: U \to V$ s.t. $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2) \forall u_1, u_2 \in U \& \forall \alpha, \beta \in K$

Lemma. *i*)
$$T(0_U) = 0_V$$

ii)
$$T(-u) = -T(u)$$

 $P^{\underline{f}}$. i) $T(0_U) = T(0_U + 0_U) = T(0_U) + T(0_U) \implies T(0_U) = 0_V$

ii)
$$T((-1)u) = (-1)T(u)$$

QED

Prop^{**n**}. Let U, V be vector spaces over $K, u_1, \ldots, u_n \in U$ basis $v_1, \ldots, v_n \in V$ then $\exists !T \ s.t. \ T : U \to V$ linear map with $T(u_i) = v_i$.

 P_{-}^{f} . Let $u \in U$ then $u = \alpha_{1}u_{1} + \dots + \alpha_{n}u_{n}$ so $T(u) = T(\alpha_{1}u_{1} + \dots + \alpha_{n}u_{n}) = \alpha_{1}v_{1} + \dots + \alpha_{n}v_{n} = v \in V$ hence T is uniquely determined. QED **Def**^{<u>n</u>}. Let $T: U \to V$ be a linear map. The image of T Im(T) is the set of vectors $v \in V$ s.t. v = T(u) for some $u \in U$. The kernel of T ker(T) is the set of vectors $u \in U$ s.t. $T(u) = 0_V$.

 $Im(T) := \{T(u) : u \in U\}, \quad \ker(T) := \{u \in U : T(u) = 0_V\}$

Prop^{**n**}. Let $T: U \to V$ be a linear map, then Im(T) is a subspace of $V \notin ker(T)$ is a subspace of U.

 $P^{\underline{f}}. \ \alpha v_1 + \beta v_2 = \alpha T(u_2) + \beta T(u_2) = T(\alpha u_1) + T(\beta u_2) = T(\alpha u_1 + \beta u_2) \in \operatorname{Im}(T) \text{ for } u_1, u_2 \in U \& \alpha, \beta \in K$ $T(\alpha u_1 + \beta u_2) = T(\alpha u_1) + T(\beta u_2) = \alpha T(u_1) + \beta T(u_2) = \alpha 0_V + \beta 0_V = 0_V \text{ where } \alpha u_1 + \beta u_2 \in \ker(T)$ QED

Def^{**n**}. Let $T: U \to V$ be a linear map dim(Im(T)) is called the <u>rank</u>, dim(ker(T)) is called the nullity.

Th^m. <u>Rank-Nullity Theorem</u>: Let U, V be vector spaces over K with U finite dimensional. Let $T : U \to V$ be a linear map. Then

$$\operatorname{rank}(T) + \operatorname{null}(T) = \dim(U)$$

 $\begin{array}{l} P^{\underline{f}}. \text{ Since } \ker(T) \text{ is a subspace of } U \text{ (Both finite dimensional). Let } \operatorname{null}(T) = s \And e_1, \ldots, e_s \text{ be a basis of } \ker(T). \text{ Now extend to a basis of } U: e_1, \ldots, e_s, f_1, \ldots, f_r. \text{ Now } \dim(U) = s + r. \ T(e_1), \ldots, T(e_s), T(f_1), \ldots, T(f_r) \text{ span } \operatorname{Im}(T) \And \operatorname{since} T(e_1), \ldots, T(e_s) \text{ all } = 0_V \text{ then } T(f_1), \ldots, T(f_r) \text{ span } \operatorname{Im}(T). \\ \text{Suppose } \alpha_1 T(f_1) + \cdots + \alpha_r T(f_r) = 0_V \text{ then } T(\alpha_1 f_1 + \cdots + \alpha_r f_r) = 0_V \text{ so } \alpha_1 f_1 + \cdots + \alpha_r f_r \in \ker(T) \text{ but } e_1, \ldots, e_s \text{ is a basis of } \ker(T) \text{ hence } \exists \beta_j \in K \text{ s.t. } \alpha_1 f_1 + \cdots + \alpha_r f_r = \beta_1 e_1 + \cdots + \beta_s e_s \Longrightarrow \alpha_1 f_1 + \cdots + \alpha_r f_r - \beta_1 e_1 - \cdots - \beta_s e_s = 0_U \text{ but } e_1, \ldots, e_s, f_1, \ldots, f_r \text{ is a basis of } U \text{ hence } \alpha_i, \beta_j = 0 \ \forall i \Longrightarrow f_1, \ldots, f_r \text{ linearly independent, hence } f_1, \ldots, f_r \text{ is a basis of } \operatorname{Im}(T) \text{ hence } \operatorname{rank}(T) + \operatorname{null}(T) = r + s = \dim(U) \end{array}$

QED

Cor^{<u>ly</u>}. Let $T: U \to V$ be a linear map where dim $(U) = \dim(V) = n$. Then the following properties of T are equivalent:

- 1. T is surjective.
- 2. $\operatorname{rank}(T) = n$
- 3. null(T) = 0
- 4. T is injective.
- 5. T is bijective.

 $\begin{array}{l} P^{\underline{f}}. \text{ (i)} \implies \operatorname{Im}(T) = V \implies \operatorname{rank}(T) = \dim(V) = n \implies (\text{ii}) \\ (\text{ii}) \implies \operatorname{Im}(T) \text{ subspace of } V \text{ dimension } n \implies \operatorname{Im}(T) = V \implies (\text{i}) \\ (\text{ii}) \implies \dim(U) = n = \operatorname{rank}(T) + \operatorname{null}(T) \implies (T) = 0 \implies (\text{iii}) \\ (\text{iii}) \implies \ker(T) = \{0_V\} T(u_1) = T(u_2) \implies T(u_1 - u_2) = 0_V \implies u_1 - u_2 \in \ker(T) = \{0_V\} \implies u_1 = u_2 \implies (\text{iv}) \\ (\text{iv}) \implies (\text{iii}) \\ \text{finally (i)}\&(\text{iv}) \iff (\text{v}) \end{array}$

 $Def^{\underline{n}}$. If the above is satisfied then T is called non-singular, otherwise singular.

Def^{<u>n</u>}. Addition & Scalar multiplication of linear maps: Let $T_1 : U \to V$ & $T_2 : U \to V$ then define $\alpha T_1 + \beta T_2 : U \to V$ to be $(\alpha T_1 + \beta T_2)(u) = \alpha T_1(u) + \beta T_2(u) \ \forall \alpha, \beta \in K \ \forall u \in U$

Def^{<u>n</u>}. Composition of linear maps: Let $T_1: U \to V \& T_2: V \to W$ then define $T_2 \circ T_1: U \to W$ to be $(T_2 \circ T_1)(u) = T_2(T_1(u)) \forall u \in U$

Linear Transformations & Matrices

Let $T: U \to V$ be a linear map, where $\dim(U) = n \& \dim(V) = \emptyset e_1, \dots, e_n$ is a basis of $U \& f_1, \dots, f_m$ a basis V. Now

$$T(e_{1}) = \alpha_{11}f_{1} + \alpha_{21}f_{2} + \dots + \alpha_{m1}f_{m}$$

$$T(e_{2}) = \alpha_{12}f_{1} + \alpha_{22}f_{2} + \dots + \alpha_{m2}f_{m}$$

$$\vdots :$$

$$T(e_{n}) = \alpha_{1n}f_{1} + \alpha_{2n}f_{2} + \dots + \alpha_{mn}f_{m}$$

$$with \alpha_{ij} \in K$$

$$(1)$$

or $T(e_j) = \sum_{i=1}^m \alpha_{ij} f_i$ for $1 \le j \le n \& A = (\alpha_{ij})$ is the matrix of the linear map T. This can be written $[T]_f^e = A$

Th^m. Let U, V be vector spaces over K of dimensions n, m respectively. For a giver choice of bases of $U \notin V$ there is a one to one correspondence between the set $\operatorname{Hom}_{K}(U, V)$ of linear maps $U \to V \notin$ the set $K^{m \times n}$ of $m \times n$ matrices over K.

 $P^{\underline{f}}$. Use the above formulation

QED

QED

Prop^{**n**}. Let $T: U \to V$ be a linear map. Let $A = (\alpha_{ij})$ represent T wrt given bases of $U \ & V$. Then $T(u) = v \iff Au = v$ for $u \in U \ & v \in V$.

$$P_{\underline{-}}^{f}. T(u) = T\left(\sum_{j=1}^{n} \lambda_{j} e_{j}\right) = \sum_{j=1}^{n} \lambda_{j} T(e_{j}) = \sum_{j=1}^{n} \lambda_{j} \left(\sum_{i=1}^{m} \alpha_{ij} f_{i}\right) = \sum_{i=1}^{m} \underbrace{\left(\sum_{j=1}^{n} \alpha_{ij} \lambda_{j}\right)}_{=*} f_{i} = \sum_{i=1}^{m} \underbrace{\mu_{i}}_{*=} f_{i}$$
OED

Prop^{**n**}. Let $T_1, T_2 : U \to V$ be linear maps & A & B the respective matrices (& wrt the same bases). Then $\alpha T_1 + \beta T_2$ has matrix $\alpha A + \beta B$.

 $P^{\underline{f}}$. Trivial

Th^m. Let $T_1: V \to W$ be a linear map with $\ell \times m$ matrix $A = (\alpha_{ij}) & \text{if let } T_2: U \to V$ be a linear map with $m \times n$ matrix $B = (\beta_{ij})$. Then the composite map $T_1 \circ T_2$ has matrix AB.

 P_{-}^{f} . Similar to P_{-}^{f} of $T(u) = v \iff Au = v$ but $T_{1}(T_{2}(u)) = ABu$ QED

Elementary Operations & Rank of a Matrix

Elementary Row Operations:

- (R1) For $i \neq j$ add a multiple of r_j to r_i (r_i, r_j are rows).
- (R2) Interchange two rows.
- (R3) Multiply a row by a non-zero scalar.

Def^{<u>n</u>}. A matrix satisfying:

- i) All zero rows below all non-zero rows.
- ii) Let r_1, \ldots, r_s be the non-zero rows, then all r_i has a 1 as its first entry.
- iii) The first non-zero entry of each row is strictly to the right og the first non-zero entry of the row above.
- iv) If row i is non-zero all entries below the first non-zero element are zero.

is said to be in upper echelon form.

Def^{<u>n</u>}. A matrix in upper echelon form satisfying:

v) If row i is non-zero then all entries above and below the first non-zero element are zero.

is said to be in row reduced form.

Th^m. Every matrix can be brought to row reduced form by elementary row operations.

 $P^{\underline{f}}$. Algorithm:

- 1) If α_{ij} & all entries below are zero move one place to the right (i, j+1) & goto (1) unless j=n
- 2) If $\alpha_{ij} = 0$ but not all entries below are, apply (R2) to exchange rows.
- 3) If $\alpha_{ij} \neq 1$ apply (R3) using α_{ij}^{-1} .
- 4) Now apply (R1) s.t. all entries above & below that every entry are zero.
- 5) Move down one & right one (i + 1, j + 1) unless i = m or j = n. QED

Elementary Column Operations:

- (C1) For $i \neq j$ adda multiple of c_i to c_i (c_i, c_j are columns).
- (C2) Interchange two columns.
- (C3) Multiply a column by a non-zero scalar.

Th^m. By applying elementary row & column operations a matrix can be brought into the form $\left(\begin{array}{c|c} I_s & 0_{s,n-s} \\ \hline 0 & 0_{s,n-s} \end{array} \right).$

 $P^{\underline{f}}$. Row reduce & use column operations.

Def^{<u>n</u>}. A matrix in the above format is said to be in <u>Smith normal form</u>.

Lemma. Let $T: U \to V$ be a linear map & e_1, \ldots, e_n a basis of U then the rank of T is the largest independent subset of $T(e_1)$, dots, $T(e_n)$.

- **Def**^{<u>n</u>}. 1) The row space of A is the subspace of K^n spanned by the rows of A. The row rank is the dimension of the row space.
 - 2) The column space of A is the subspace of K^n spanned by the columns of A. The column rank is the dimension of the column space.

Th^m. Suppose the linear map T has matrix A then rank(T) = column rank(A)

 P^{f}_{-} . Use above lemma.

Th^{\underline{m}}. Applying elementary row operations of elementary column operations does not change the row \mathcal{E} column rank.

 $P^{\underline{f}}$. Obviousness.

 $\mathbf{Cor}^{\underline{ly}}$. The number of non-zero rows in the Smith normal form of a matrix A is equal to both the row \mathcal{E} column rank.

 P_{-}^{f} . Elementary row & column operations don't change row or column ranks so:

 $\operatorname{row}\operatorname{rank}(A) = \operatorname{row}\operatorname{rank}(\operatorname{Smith} \operatorname{normal} \operatorname{form} \operatorname{of} A) = s = \operatorname{column}\operatorname{rank}(\operatorname{Smith} \operatorname{normal} \operatorname{form} \operatorname{of} A) = \operatorname{column}\operatorname{rank}(A)$

Cor^{ly}. The rank of a matrix A is equal to the number of rows that are non-zero in upper echelon form $P^{\underline{f}}$. Non-zero rows in upper echelon form are linearly independent. QED

Th^m. Let A be the augmented $n \times (m+1)$ matrix of a linear system. Let B be the matrix obtained from A by removing the last column. The system of equations have a solution $\iff \operatorname{rank}(A) = \operatorname{rank}(B)$

QED

QED

QED

The inverse of a Linear Transformation & of a Matrix

Def^{**n**}. Let $T: U \to V$ be a linear transformation with corresponding matrix $A(m \times n)$. If $\exists T^{-1}: V \to U$ with $TT^{-1} = I_V \& T^{-1}T = I_U$ then T is said to be <u>invertible</u> & T^{-1} is called the <u>inverse</u>. If so, A^{-1} is the $(n \times m)$ matrix & $AA^{-1} = I_m \& A^{-1}A = I_n$, then A is said to be <u>invertible</u> & A^{-1} is called the <u>inverse</u>.

Lemma. Let A be a matrix of a linear map T. T is invertible $\iff A$ is invertible. $T^{-1} & A^{-1}$ are unique.

 P_{-}^{f} . Bijection between matrices & linear mpas.

QED

QED

Th^m. A linear map T is invertible \iff T is non-singular. In particular if T is invertible then m = n so only square matrices are invertible.

 P_{-}^{f} . Map required to be injective so is inverse, hence bijection etc.

Prop^{**n**}. The row reduced form of an invertible $n \times n$ matrix A is I_n

Elementary matrices:

- $E(n)_{\lambda,i,j}^1$ $(i \neq j)$ $n \times n$ matrix like the identity butt with a non-zero entry λ in the $(i, j)^{th}$ position.
- $E(n)_{i,j}^2$ Like the $n \times n$ identity with $i^{th} \& j^{th}$ rows interchanged.
- $E(n)^3_{\lambda,i}$ ($\lambda \neq 0$) like the $n \times n$ identity λ in the $(i,i)^{th}$ position.

Th^m. An invertible matrix is a product of elementary matrices.

Th^{$\underline{\mathbf{m}}$}**.** Let A be an $n \times n$ matrix:

- i) The homogeneous system ax = 0 has a non-trivial solution $\iff A$ is singular.
- ii) The system Ax = b has a unique solution $\iff A$ is non-singular.
- $P^{\underline{f}}$. i) The solution is nullspace(A) if T corresponds to A nullspace(T) = ker(T) = $\{0\}$ \iff null(T) = 0 \iff T non-singular gives no solutions hence require A singular.
 - ii) If A singular then its nullity> 0 so nullspace $(A) \neq \{0\} \implies$ no solutions OR solutions are x+nullspace(A) hence not unique.

QED

The Determinant of a Matrix

Def^{<u>n</u>}. A permutation ϕ is said to be <u>even</u> if it is a composition of an even number of transpositions & sign(ϕ) = +1 & <u>odd</u> if a composition of an odd number of transpositions & sign(ϕ) = -1.

Def^{<u>n</u>}. The <u>determinant</u> of an $n \times n$ matrix $A = (\alpha_{ij})$ is the scalar quantity

$$\underline{\det(A)} := \sum_{\phi \in S_n} \operatorname{sign}(\phi) \alpha_{1\phi(1)} \cdots \alpha_{n\phi(n)}$$

Th^m. Elementary row operations affect the determinant as follows:

- $i) \det(I_n) = 1.$
- ii) Applying (R2) changes the determinants sign.
- iii) If A has two equal rows det(A) = 0.
- iv) Applying (R1) does not change the determinant.
- v) Applying (R3) multiplies the determinant by λ .

 $P^{\underline{f}}$. i) $\alpha_{ij} = 0 \ \forall i \neq j$ so only identity permutation is non-zero $\det(I) = \alpha_{11} \cdots \alpha_{nn} = 1$.

- ii) $\det(B) = \sum_{\phi \in S_n} \operatorname{sign}(\phi) \beta_{1\phi(1)} \cdots \beta_{n\phi(n)}$ let $\varphi = \phi \circ (i, j)$ now $\operatorname{sign}(\varphi) = -\operatorname{sign}(\phi)$ hence $= \sum_{\varphi \in S_n} -\operatorname{sign}(\phi) \alpha_{1\varphi(1)} \cdots \alpha_{n\varphi(n)} = -\det(A).$
- iii) Use part (ii) & swap rows that are the same now $det(A) = -det(A) \implies det(A) = 0$.
- iv)

$$det(B) = \sum_{\phi \in S_n} sign(\phi) \alpha_{1\phi(1)} \cdots (\alpha_{i\phi(i)} + \lambda \alpha_{j\phi(j)}) \cdots \alpha_{n\phi(n)}$$
$$= \sum_{\phi \in S_n} sign(\phi) \alpha_{1\phi(1)} \cdots \alpha_{n\phi(n)} + \lambda \sum_{\phi \in S_n} sign(\phi) \alpha_{1\phi(1)} \cdots \alpha_{j\phi(j)} \alpha_{j\phi(j)} \cdots \alpha_{n\phi(n)}$$

Second term = 0 since $\alpha_{j\phi(j)}$ repeated is the same as two equal rows.

v)
$$\det(B) = \sum_{\phi \in S_n} \operatorname{sign}(\phi) \alpha_{1\phi(1)} \cdots \lambda \alpha_{i\phi(i)} \cdots \alpha_{n\phi(n)} = \lambda \sum_{\phi \in S_n} \operatorname{sign}(\phi) \alpha_{1\phi(1)} \cdots \alpha_{n\phi(n)} = \lambda \det(A)$$

QED

Defⁿ. A matrix is upper triangular if all entries below the leading diagonal are zero.

Cor^{ly}. The determinant of an upper triangular matrix is the product of its diagonal entries.

Def^{<u>n</u>}. Let $A = (\alpha_{ij})$ be an $m \times n$ matrix. Define the transpose \underline{A}^T of A to be the $n \times m$ matrix $(\beta_{ij}) = (\alpha_{ji})$.

Th^m. Let $A = (\alpha_{ij})$ be an $n \times n$ matrix, then $\det(A^T) = \det(A)$. $P^{\underline{f}}$.

$$det(A^{T}) = \sum_{\phi \in S_{n}} sign(\phi)\beta_{1\phi(1)} \cdots \beta_{n\phi(n)}$$
$$= \sum_{\phi \in S_{n}} sign(\phi)\alpha_{\phi(1)1} \cdots \alpha_{\phi(n)n}$$
$$= \sum_{\phi \in S_{n}} sign(\phi)\alpha_{1\phi(1)} \cdots \alpha_{n\phi(n)}$$
$$= det(A)$$

\cap	E	D
W	17	$\boldsymbol{\nu}$

Cor^{ly}. Elementary column operations affect the determinant as row operations do.

Th^m. An $n \times n$ matrix A has det $(A) = 0 \iff A$ is singular.

 $P^{\underline{f}}$. Row reduce A to obtain A', $\det(A) = 0 \iff \det(A') = 0$, A' is upper triangular hence $\det(A) = 0 \iff$ one diagonal entry is $0 \iff A'$ has a zero row \iff row rank $(A) < n \iff A$ is singular.

Lemma. If E is an elementary matrix & B any matrix both $n \times n$ then det(EB) = det(E) det(B).

 P_{-}^{f} . det $(E^{1}) = 1$, det $(E^{2}) = -1$, det $(E^{3}) = \lambda$ & consider row operations. QED

Th^{**m**}. For any two $n \times n$ matrices $A \notin B$: det(AB) = det(A) det(B).

$$P^{\underline{f}}. \det(AB) = \det(E_1) \det(E_2 \cdots E_n B) = \det(E_1) \cdots \det(E_n) \det(B) = \det(E_1 \cdots E_n) \det(B)$$
$$= \det(A) \det(B)$$
QED

Def^{<u>n</u>}. Let $A = (a_{ij})$ be an $n \times n$ matrix. Let A_{ij} be the matrix $(n-1) \times (n-1)$ obtained by eliminating the i^{th} row & j^{th} column of A. $M_{ij} = \det(A_{ij})$ is called the $(i, j)^{th}$ minor of A.

Def^{**n**}.
$$c_{ij} = (-1)^{i+j} M_{ij} = (-1)^{i+j} \det(A_{ij})$$
 is called the $\underline{(i,j)^{th}}$ cofactor of A .

Th^m. Let A be an $n \times n$ matrix.

i) Expansion by i^{th} row: det $(A) = \alpha_{i1}c_{i1} + \cdots + \alpha_{in}c_{in} = \sum_{j=1}^{n} \alpha_{ij}c_{ij}$.

ii) Expansion by j^{th} column: $det(A) = \alpha_{1j}c_{1j} + \dots + \alpha_{nj}c_{nj} = \sum_{i=1}^{n} \alpha_{ij}c_{ij}$.

 $P^{\underline{f}}$.

$$\sum_{\substack{\phi \in S_n \\ \phi(n) = n}} \operatorname{sign}(\phi) \alpha_{1\phi(1)} \cdots \alpha_{n\phi(n)} = \sum_{\substack{\phi \in S_{n-1}}} \operatorname{sign}(\phi) \alpha_{1\phi(1)} \cdots \alpha_{n-1\phi(n-1)}$$

now det
$$(B) = \beta_{nn} N_{nn} = (-1)^{i+j} \alpha_{ij} M_{ij} = \alpha_{ij} c_{ij}$$
 hence det $(A) = \sum \alpha_{ij} c_{ij}$ for fixed *i* or *j*. QED

Def^{<u>n</u>}. Let A be an $n \times n$ matrix. Define the adjugate of A, $\operatorname{adj}(A)$, to be the $n \times n$ matrix with $(i, j)^{th}$ element the cofactor c_{ji} . i.e. the transpose of the matrix of cofactors.

Th^{$$\mathbf{m}$$}. $Aadj(A) = det(A)I_n = adj(A)A$

$$P^{f}_{-} A = (\alpha_{ij}) \operatorname{adj}(A) = (c_{ij}) \text{ so } A\operatorname{adj}(A) = \left(\sum_{j=1}^{n} \alpha_{ij} c_{kj}\right). \text{ If } k \neq i \sum_{j=1}^{n} \alpha_{ij} c_{kj} = 0 \text{ hence}$$
$$\operatorname{Aadj}(A) = \operatorname{det}(A)I_{n}$$
QED

Cor^{ly}. If det(A) $\neq 0$ then $A^{-1} = \frac{1}{\det(A)} adj(A)$.

Change of Basis & Equivalent Matrices

Prop^{**n**}. The change of basis matrix is invertible. i.e. if P is the change of basis matrix from e_i 's to e'_i 's $\mathcal{E} Q$ is the change of basis ,matrix from e'_i 's to e_i 's then $P = Q^{-1}$.

 $P^{\underline{f}}$. Consider $I_U: U \to U \to U$ where the first & last spaces use the same bases $\implies PQ = I_n \implies P = Q^{-1}$ QED

Prop^{**n**}. Pv = v' where $v = \alpha_1 e_1 + \dots + \alpha_n e_n$ & $v' = \beta_1 e'_1 + \dots + \beta_n e'_n$.

 $P^{\underline{f}}$. Obviousness

Th^m. Let $T: U \to V$ be a linear map e, e' bases of U, f, f' bases of V

$$P = [Id_U]_{e'}^e \quad Q = [Id_V]_{f'}^f \quad A = [T]_f^e \quad B = [T]_{f'}^{e'}$$

Then $B = QAP^{-1}$.

$$P_{-}^{f}$$
. $e \xrightarrow{P} e' \xrightarrow{B} f'$ hence $BP \quad e \xrightarrow{A} f \xrightarrow{Q} f'$ hence $QA \implies BP = QA$ QED

Def^{<u>n</u>}. $A\&B \ m \times n$ matrices are <u>equivalent</u> iff there are invertible matrices $P \ n \times n$ matrix & $Q \ m \times m$ matrix s.t. B = QAP.

Th^m. Let A & B be $m \times n$ matrices over K the following conditions are equivalent:

- i) A & B are equivalent.
- ii) A&B represent the same linear map wrt. different bases.
- iii) $A \mathfrak{E} B$ have the same rank.
- iv) B can be obtained from A using elementary row \mathfrak{C} column operations.
- P_{-}^{t} . (i) \iff (ii) by the previous Th<u>m</u>.

(ii) \implies (iii) Since A&B represent the same linear map $\operatorname{rank}(A) = \operatorname{rank}(T) = \operatorname{rank}(B)$.

(iii) \implies (iv) Both A&B have rank s so can be brought to Smith normal form by elementary row & column operations. i.e: $A \leftrightarrow S.N.F. \leftrightarrow B$

(iv) \implies (i) $B = R_r R_{r-1} \cdots R_1 A C_1 C_2 \cdots C_s$ where $R_i \& C_i$ are row & column operation elementary matrices, hence B = QAP QED

Similar Matrices, Eigenvectors & Eigenvalues

Def^{<u>n</u>}. Two $n \times n$ matrices over K are said to be <u>similar</u> if \exists an $n \times n$ matrix P which is invertible with $B = P^{-1}AP$.

Defⁿ. A matrix similar to a diagonal matrix is said to be diagonalisable.

Def^{<u>n</u>}. Let $T: V \to V$ be a linear map where V is a vector space over K. Suppose $v \in V$ non-zero & some $\lambda \in K$ we have $T(v) = \lambda v$. Then v is called an eigenvector of T & λ an eigenvalue of T corresponding to v.

Def^{**n**}. Let A be an $n \times n$ matrix over K. Suppose some non-zero vector v & scalar $\lambda \in K$ satisfy $Av = \lambda v$. Then v is called an eigenvector of A & λ an eigenvalue of A corresponding to v.

Th^m. Let A be an $n \times n$ matrix. Then λ is an eigenvalue $\iff \det(A - \lambda I_n) = 0$.

 $P_{-}^{f} \stackrel{\text{``}}{\Longrightarrow} \stackrel{\text{``}}{\Longrightarrow} Av = \lambda v \text{ so } Av = \lambda I_{n}v, (A - \lambda I_{n})v = 0 \text{ for a solution } \det(A - \lambda I_{n}) = 0.$ $\stackrel{\text{``}}{\longleftarrow} \det(A - \lambda I_{n}) = 0 \text{ then } A - \lambda I_{n} \text{ is singular, so has solutions } \Longrightarrow \exists x \ s.t. \ Av = \lambda v.$ QED

Def^{<u>n</u>}. For an $n \times n$ matrix A the equation det $(A - \lambda x) = 0$ is called the characteristic equation of A & det $(A - \lambda x)$ is called the characteristic polynomial.

Th^m. Similar matrices have the same characteristic equation & hence the same eigenvalues.

 $P^{\underline{f}}. \text{ Let } A\&B \text{ be similar hence } B = P^{-1}AP \text{ for some } P$ $\det(B - xI_n) = \det(P^{-1}AP - xI_n) = \det(P^{-1}(A - xI_n)P) = \det(P^{-1})\det(A - xI_n)\det(P)$ $= \det(P^{-1})\det(P)\det(A - xI_n) = \det(A - xI_n)$ QED

Prop^{**n**}. Suppose A is upper triangular, the eigenvalues are just α_{ii} .

$$P_{-}^{I} \det(A - xI_n) = (\alpha_{11} - x) \cdots (\alpha_{nn} - x) = 0$$
QED

Th^m. Let $T: V \to V$ be a linear map, the matrix of T is diagonal wrt. to some basis of $V \iff V$ has a basis consisting of eigenvectors of T.

Equivalently: Let A be an $n \times n$ matrix over K. Then A is similar to a diagonal matrix $\iff K^n$ has a basis of eigenvectors of A.

 P_{-}^{f} . " \implies " Suppose $A = (\alpha_{ij})$ is diagonal wrt. a basis of V hence $T(e_i) = \alpha_{ii}e_i$ so each e_i is an eigenvector.

" \Leftarrow " Suppose e_i 's are a basis of V consisting of eigenvectors, so $T(e_i) = \lambda e_i$ for some $\lambda_i \in K$ so the matrix $A = (\alpha_{ij})$ with $\alpha_{ii} = \lambda_i$.

Th^m. Let $\lambda_1, \ldots, \lambda_r$ be distinct eigenvalues with v_1, \ldots, v_r eigenvectors then v_1, \ldots, v_r are linearly independent.

 $P^{\underline{f}}$. Induction on r.

 $\operatorname{Cor}^{\operatorname{ly}}$. If A has distinct eigenvalues it is diagonalisable.

Def^{<u>n</u>}. The scalar product of two vectors $v = (\alpha_1, \ldots, \alpha_n)$ & $w = (\beta_1, \ldots, \beta_n)$ in \mathbb{R}^n is defined to be $v \cdot w = \sum_{i=1}^n \alpha_i \beta_i$.

Def^{<u>n</u>}. A basis b_1, \ldots, b_n is called <u>orthonormal</u> if $b_i \cdot b_i = 1 \quad \forall i \& b_i \cdot b_j = 0 \quad \forall i \neq j$.

Def^{<u>n</u>}. An $n \times n$ matrix A is said to be symmetric if $A^T = A$.

Def^{<u>n</u>}. An $n \times n$ matrix A is said to be orthogonal if $A^T = A^{-1}$ or indeed $AA^T = A^TA = I_n$.

Propⁿ. An $n \times n$ matrix A over \mathbb{R} is orthogonal \iff the rows r_1, \ldots, r_n form an orthonormal basis of \mathbb{R}^n \iff the columns c_1, \ldots, c_n form an orthonormal basis of \mathbb{R}^n .

 $P^{\underline{f}}$. Orthogonal matrix A is invertible hence row & column ranks are n & hence the rows & columns form bases. $A^T A = I_n \implies r_i \cdot r_i = 1 \ \forall i \ \& \ r_i \cdot r_j = 0 \ \forall i \neq j$. Similarly for the converse. QED

Prop^{**n**}. Let A be a real symmetric matrix then A has a n eigenvalue in \mathbb{R} & all complex eigenvalues of A are in \mathbb{R} .

$$\begin{array}{l} P^{\underline{f}}. \ \det(A - \lambda I_n) \in \mathbb{R}[\lambda]_{deg=n} \quad Av = \lambda v \ \& \ A\bar{v} = \bar{\lambda}\bar{v} \ (\text{since } \bar{A} = A). \ \text{Also,} \ A^T = A \ \text{so} \ v^T A^T = v^T A = \lambda v^T \\ \text{so} \quad \begin{pmatrix} v^T A)\bar{v} = \lambda v^T \bar{v} \\ v^T (A\bar{v}) = v^T \bar{\lambda}\bar{v} \end{array} \right\} \implies \lambda v^T \bar{v} = \bar{\lambda} v^T \bar{v} \implies (\lambda - \bar{\lambda}) v^T \bar{v} = 0 \ \text{since} \ v^T \bar{v} \neq 0 \implies \lambda = \bar{\lambda} \ \text{hence} \ \lambda \in \mathbb{R} \\ \text{QED} \end{array}$$

Prop^{<u>n</u>}. Let A be a real symmetric matrix \mathscr{C} let λ_1, λ_2 be two distinct eigenvalues v_1, v_2 then $v_1 \cdot v_2 = 0$.

 $P^{\underline{f}}. Av_1 = \lambda_1 v_1 \& Av_2 = \lambda_2 v_2 \text{ since } v_1^T A^T = \lambda_1 v_1^T, v_1^T Av_2 = \lambda_1 v_1^T v_2$ & similarly $v_2^T Av_1 = \lambda v_2^T v_1 = \lambda_2 v_2^T v_1 \implies v_1^T Av_2 = \lambda_2 v_1^T v_2$ $\therefore (\lambda_2 - \lambda_1) v_1^T v_2 = 0 \text{ since } \lambda_2 - \lambda_1 \neq 0 \quad v_1 \cdot v_2 = 0$ QED

Th^m. Let A be a real symmetric matrix. \exists a real orthogonal matrix P with $P^{-1}AP = P^TAP$ diagonal.

 P_{\cdot}^{f} . (Case of distinct eigenvalues only) $\lambda_{i} \in \mathbb{R}$ eigenvalues $\implies v_{i} \in \mathbb{R}^{n}$ eigenvectors $v_{i} \cdot v_{j} = v_{i}^{T}v_{j} = 0$ for $i \neq j$ since $v_{i} \neq 0$ $v_{i} \cdot v_{i} = \alpha_{i} > 0$ so replacing each v_{i} with $v_{i}/\sqrt{\alpha_{i}}$ we know $v_{i} \cdot v_{i} = 1 \forall i$. All the v_{i} are independent & form a basis (orthogonal). But $P^{-1}AP$ is the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$. QED