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Axioms for Number Systems

Let S be a number system (S, 4+, X)
Axioms for Addition:

Al: Va,5€S a+p=F+a

A2: Va,B,v€S (a+pB)+y=a+(B+7)

A3: e Sst.VaeS O0+a=a+0=«

Ad: Vae S I(—a)eSst.a+(—a)=(—a)+a=0

Axioms for Multiplication:

Ml1: Va,B €S af = Ba

M2: Vo, 8,7 € S (aB)y = a(B7)

M3: 31 e€Sst.Vae S la=al =«

M4: Va € S* Ja~t e Sst.aat=a"la=1

Distributivity:

D1: Va,8,v€ S (a+B8)y=ay+ By

Def?. A set S with addition & multiplication satisfying A1-A4, M1-M4 & D1 is a field if 1 # 0.

Vector Spaces

Def®. A vector space over a field K is a set V with addition & scalar multiplication, so
VobweV v+weV &Vae KVveV dav eV

i) Addition Satisfies A1-A4 Deductions:

i) a(v+w)=av+aw i) a0=0Va e K

iil) (a+ B)v =av + fv = i) ov=0YveV

iv) (af)v = a(fv) iii) —(aw) = (—a)v=a(—v)Vae KYv eV
v) lv=vlVoeV iv) fav=0thena=0o0rv =0



Linear Independence, Spanning & Bases of Vector Spaces

Def2. Let V be a vector space over K, v1,...,v, € V the vectors are linearly independent if 3o, ... a, € K

not all 0 s.t. ayvy + -+ + a,v, = 0, otherwise linearly dependent.

Lemma. Ifv,,...,v, are linearly dependent, either vy = 0 or v, is a linear combination of v1,...,V,._1.
P!, Trivial QED
Def®. vq,...,v, span V if Vo € V daq,...,a, s.t. cjvy + -+ apv, =0

Def2. If vy,...,v, span V & are linearly independent they form a basis of V.
Def2. The unique scalars that determine any given v € V are called the coordinates of v.

Th. The Basis Theorem: Suppose v1,...,V, & w1, ..., w, are both bases of the vector space V', then
m=n.

Def?. The number of vectors n in a basis of the finite dimensional vector space V is called the dimension:
dim(V) = n.

Sifting: Given vq,...,v, € V successively look at wvq,...,v, keep v; unless v; = 0 or v; is a linear
combination of vy,...,v;_1.

Lemma. Ifvy,...,v,,w span V & w is a linear combination of vy,...,v, then vyi,...,v, span V.
Plow= a1v] + -+ - + a,v, now substitute w QED
Th2. Suppose vi,...,v, span V then 3 subsequence of vectors, a basis of V.

PLSift vy,..., v, QED
Th2®. Suppose v1,...,v, are linearly independent in V. We can extend this to a basis of V.

Pl Add wy, ..., w,, & sift out w's. QED
Prop®. The Exchange Lemma: Suppose vy, ...,v, span V & wq, ..., wy, are linearly independent in

V then m < n.

P!, Place wy infront of vy,...,v, & sift removing at lest one vector. now repeat for w; removing at
lesat one vector each time. Hence m < n. QED

CorY. If n vectors form a basis of V then n — 1 vectors cannot span V & n + 1 vectors cannot be
independent.

P!, Of The Basis Theorem: Since v;’s span V & w;’s are linearly independent n < m by Exchange
Lemma. Since w;’s span V & wv;’s are linearly independent m < n by Exchange Lemma. Hence n = m.
QED

Subspaces

Def®. A subspace of V' is a non-empty subset W C V' s.t. W is closed under addition & scalar multipli-
cation. i.e: u,veW a,f e K = au+pveW

Prop®. If Wy & Wy are subspaces of V' then so is W1 N Wy
P!, Trivial QED

Note. W1 U W5 not necessarily a subspace.

Def®. Let Wy & W5 be subspaces of V' then Wy + W5 is defined to be v € V' s.t. v = wy + w- for some
wy € Wi & wy € Wy or Wi + Wo ::{w1+w2:w16W1 UJQGWQ}

Prop2. Wy + W5 is the smallest subspace to contain Wy & Ws.
PI. Any subspace of V' containing W7 & W5 must contain W7 + Wy QED



At this point we drop bold face notation for vectors

Th2. IfV is a finite dimensional vector space €& Wy, Wy subspaces of V' then:

Pl Let dim(W1+W,) =r & ey, ..., e, be a basis of Wy NW,. Extend this to e, ..., e, fi,..., fs tobea
basis of W7 s.t. dim(W;) = r+s. Also extend to ey, ..., e, q1,-..,g: to be a basis of Wy s.t. dim(Ws) =
r4+t

Ywi € Wi, wi =oger +--4+oper +Bifi + -+ B fs

VYwy € Wa, wa = y1e1 + -+ yper + 0191 + -+ 0:9¢

hence wy +wy = (a1 +y1)er + -+ (ar + v )er + frfi 4+ -+ Bofs + 0191 + -+ dege € Wi + Wy s0
ei, fi, gk span Wy + Ws

Suppose: aje; +- -+ aper +Bifi+ -+ Bsfs + g1+ + 9 =0

then ane; +---+ape, + B1f1+ -+ Bsfs = =91 — - — g, st. LHS € Wy, RHS € W»
= both € W7 N W, with basis e;.
Now —vig1 — -+ — 79t = 0161 + - - + e, i€t d1e1 4 -+ 0pep + 7191 + -+ 79 = 0

i, gx basis of Wy = all 0’s & v’s = 0 leaving aje; + -+ ape,. +B1f1 +- 4+ Bsfs =0
ei, f; basis of Wi = all o’s & 8’s = 0 so e;, f}, gi are linearly independent, hence e;, f;, gi are a basis
of Wy + W5, hence

dim(Wy 4+ Wy) = dim(Wh) + dim(Wy) — dim(W, N W)

QED
Prop®. vy,...,v, € V all linear combinations form a subspace of V.
P!, Trivial QED
Def2. Wy, W5 subspaces of V' are complementary if W, N Wy = {0} & W, UW, =V.

Prop2. Wy, Wy subspaces of V., W1 & Wy are complementary <= v € V can be written uniquely as
v = wi + wy where wy € Wy & wy € Wh.

P = Suppose W71, Wy complementary then Wi+Ws = V so can find wy € Wy & we € Wh s.t. v = wy + wo
suppose w; € Wy & wh € Wy s.t. v = w) + wh now wy + we = wi + wh, wy — wj = wh —wy LHS € Wy

RHS € W5 hence both € W7 N Wy but Wi N W, = {0} hence wy = w| & we = wj.

“ <= 7 Suppose every v € V can be uniquely written v = w; + wy, with wy € Wi wy € W,y
(Obv.) Wi+ Wy =V. f0#v e W NWythenv =v+0, v € Wy v =0+4+v, v € Wy. Hence

W1 NWy ={0} = Wy, W, complementary. QED

Linear Transformations

Def®2. Let U & V be vector spaces over K, a linear transformation or linear map T from U to V is a
function T : U — V s.t. T(auy + Puz) = oI (u1) + BT (ug) Yur,us € U & Va, f € K

Lemma. i) T(0y) = Oy
it) T(—u) = —T(u)
Pl i) T(0y) =T(0u 4+ 0v) =T(0y) + T(0y) = T(0y) = Ov

QED

Prop?®. Let U,V be vector spaces over K, uy,...,u, € U basis vi,...,v, €V then AT st. T:U =V
linear map with T (u;) = v;.

Pl Let u € U then v = ajuy + - - - + i, SO T(u) =T(aqus + -+ apuy) =1+ -+ ayv, =v eV
hence T is uniquely determined. QED



Def?. Let T : U — V be a linear map. The image of T Im(7") is the set of vectors v € V s.t. v = T'(u)
for some u € U. The kernel of T ker(T) is the set of vectors u € U s.t. T(u) = Oy.

Im(T) :={T(v) :weU}, ker(T):={uelU:T(u)=0y}

Prop®. Let T :U — V be a linear map, then Im(T') is a subspace of V' & ker(T) is a subspace of U.

PL v+ Buy = aT(ug)+ BT (ug) = T(auy)+T(Bug) = T(ouy + Bug) € Im(T) for uy,ug € U &a, B € K
T(ouy + fug) = T(aur) + T(Buz) = aT(uy) + BT (uz) = aly + S0y = Oy where auy + Pug € ker(T')
QED

Def?. Let T : U — V be a linear map dim(Im(7T")) is called the rank, dim(ker(T")) is called the nullity.

Th2. Rank-Nullity Theorem: Let U,V be vector spaces over K with U finite dimensional. LetT : U — V
be a linear map. Then

rank(7) + null(T) = dim(U)

PL. Since ker(T) is a subspace of U (Both finite dimensional). Let null(T) = s & ey, ..., es be a basis of

ker(T"). Now extend toabasisof U: ey,...,es, f1,..., fr. Now dim(U) = s+r. T(e1),...,T(es), T(f1),- .., T(fr)

span Im(T") & since T'(ey),...,T(es) all = 0y then T(f1),...,T(fr) span Im(T).

Suppose a1 T(f1)+- -+, T(fr) =0y then T(ay f1 4+ -+ fr) =0y so a1 f1+- -+, f € ker(T) but
e1,...,es is a basis of ker(T') hence 35; € K s.t. a1 fi+-- -+, fr = fre1+- -+ fses = ar1fi+---+
apfr—pBie1 —---—Bses =0y but e1,...,eq, f1,..., fr is a basis of U hence o, 3; =0Vi = f1,..., f»r
linearly independent, hence fi,..., f, is a basis of Im(7T) hence rank(7T") + null(T) = r 4+ s = dim(U)

QED

CorY. Let T : U — V be a linear map where dim(U) = dim(V) = n. Then the following properties of
T are equivalent:

1. T is surjective.
2. rank(T) =n
3 null(T)=0
4. T is injective.
5

. T 1is bijective.

ja

Pl (i) = Im(T) =V = rank(T) = dim(V) =n (ii)
(ii) = Im(T) subspace of V dimension n = Im(T) =V = (i)

(i) = dim(U) = n =rank(T) + null(T) = (T) =0 = (iii)

(iil) = ker(T) ={0v} T(u1) = T(ug) = T(u; —uz) =0y = uy —uz €ker(T) ={0yv} = u; =
Uy — (1V)

(iv) = (iii)

finally (i)&(iv) <= (v) QED

Def2. If the above is satisfied then 7" is called non-singular, otherwise singular.

Def®2. Addition & Scalar multiplication of linear maps: Let Ty : U — V & T, : U — V then define
aTy + T2 : U = V to be (aT1 + fT2)(u) = aTi(u) + BT2(u) Vo, f € K Yu € U

Def®. Composition of linear maps: Let T} : U -V & 15 : V — W then define T 0o T} : U — W to be
(Ta o Ty)(u) = To(Ty(uw) Vu € U




Linear Transformations & Matrices

Let T : U — V be a linear map, where dim(U) =n & dim(V) =, & e1,...,e, isabasisof U & fi1,..., fm
a basis V. Now

T(el) = allf1+0421f2+"‘+am1fm
T(e2) = aiafi+asafo+ -+ amafm
T(en) = alnfl + a2n,f2 + -+ Ofmnfm
with a;; € K (1)

or T(ej) =>1" agjfi for 1 < j <n& A= () is the matrix of the linear map T'. This can be written
[1]; =4
f

Th™®. Let U,V be vector spaces over K of dimensions n, m respectively. For a giver choice of bases of
U &V there is a one to one correspondence between the set Homgy (U, V') of linear maps U — V' & the
set K™*™ of m x n matrices over K.

P!, Use the above formulation QED

Prop®. Let T : U — V be a linear map. Let A = (ay;) represent T wrt given bases of U & V. Then
Tu)=v < Au=v foruelU HuveV.

PL.T(u)=T (Z?:l Aj%‘) =2 AT (eg) = 200 A (i usfi) = 2005, Zazj/\j fi=Y0" \Hi/fi
J=1 e

=3k

QED

Prop?. Let Th,T5 : U — V be linear maps & A & B the respective matrices (& wrt the same bases).
Then o1 + BTy has matrizc A + 5B.

PI. Trivial QED

Th®., Let Ty : V. — W be a linear map with ¢ x m matrizc A = (coy;) & let Ty : U =V be a linear map
with m x n matriz B = (8,;;). Then the composite map Ty o Ty has matriz AB.

P! Similar to PL of T(u) =v <= Au = but T1(Tx(u)) = ABu QED

Elementary Operations & Rank of a Matrix
Elementary Row Operations:
(R1) For i # j add a multiple of r; to r; (r;,r; are rows).
(R2) Interchange two rows.
(R3) Multiply a row by a non-zero scalar.
Def®. A matrix satisfying:
i) All zero rows below all non-zero rows.
ii) Let r1,...,7s be the non-zero rows, then all r; has a 1 as its first entry.

iii) The first non-zero entry of each row is strictly to the right og the first non-zero entry of the row
above.

iv) If row ¢ is non-zero all entries below the first non-zero element are zero.

is said to be in upper echelon form.




Def®. A matrix in upper echelon form satisfying:
v) If row 7 is non-zero then all entries above and below the first non-zero element are zero.
is said to be in row reduced form.
Th™®. Every matriz can be brought to row reduced form by elementary row operations.
P Algorithm:
1) If a;; & all entries below are zero move one place to the right (4, j 4+ 1) & goto (1) unless j =n
2) If a;; = 0 but not all entries below are, apply (R2) to exchange rows.
3) If oy; # 1 apply (R3) using a;jl.
4) Now apply (R1) s.t. all entries above & below that every entry are zero.
5) Move down one & right one (i + 1,5 + 1) unless i = m or j = n. QED
Elementary Column Operations:
(C1) For ¢ # j adda multiple of ¢; to ¢; (¢, c; are columns).
(C2) Interchange two columns.
(C3) Multiply a column by a non-zero scalar.
Th™®. By applying elementary row & column operations a matriz can be brought into the form

( Is ‘ Os,nfs )
Om—s,s ‘ Om—s,n—s

P!, Row reduce & use column operations. QED

Def®. A matrix in the above format is said to be in Smith normal form.

Lemma. Let T : U — V be a linear map & eq,...,e, a basis of U then the rank of T is the largest
independent subset of T'(e1),dots, T (ey,).

Def®. 1) The row space of A is the subspace of K™ spanned by the rows of A. The row rank is the
dimension of the row space.

2) The column space of A is the subspace of K™ spanned by the columns of A. The column rank is
the dimension of the column space.

Th®. Suppose the linear map T has matriz A then rank(T") = columnrank(A)
P!, Use above lemma. QED

Th™®. Applying elementary row operations of elementary column operations does not change the row &
column rank.

P!, Obviousness. QED

CorY. The number of non-zero rows in the Smith normal form of a matriz A is equal to both the row
& column rank.

P!, Elementary row & column operations don’t change row or column ranks so:

row rank(A) = row rank(Smith normal form of A) = s = column rank(Smith normal form of A) = column rank(A)
QED

CorY. The rank of a matriz A is equal to the number of rows that are non-zero in upper echelon form

P!, Non-zero rows in upper echelon form are linearly independent. QED

Th™. Let A be the augmented n x (m+ 1) matriz of a linear system. Let B be the matrixz obtained from
A by removing the last column. The system of equations have a solution <= rank(A) = rank(B)



The inverse of a Linear Transformation & of a Matrix

Def?. Let T : U — V be a linear transformation with corresponding matrix A (mxn). f 371 :V — U
with TT—! = Iy & T—'T = Iy then T is said to be invertible & 7! is called the inverse.

If so, A=1 is the (n x m) matrix & AA™! =1, & A"1A = I,,, then A is said to be invertible & A1 is
called the inverse.

Lemma. Let A be a matriz of a linear map T. T is invertible <= A is invertible. T=1 & A~ are
unique.

P!, Bijection between matrices & linear mpas. QED

Th2. A linear map T is invertible <= T is non-singular. In particular if T is invertible then m = n
so only square matrices are invertible.

P!, Map required to be injective so is inverse, hence bijection etc. QED
Prop®. The row reduced form of an invertible n X n matriz A is I,
Elementary matrices:

. E(n)}\” (i # 7) n x n matrix like the identity butt with a non-zero entry X in the (i, 7)*" position.

e E(n)?; Like the n x n identity with i’ & j*" rows interchanged.

. E(n)i’\Z (X # 0) like the n x n identity A in the (4,7)*" position.

Th™®. An invertible matriz is a product of elementary matrices.

Th™®. Let A be an n X n matriz:
i) The homogeneous system ax = 0 has a non-trivial solution <= A is singular.
it) The system Ax = b has a unique solution <= A is non-singular.

Pl i) The solution is nullspace(A) if T' corresponds to A nullspace(T) = ker(T) = {0} <
null(T) =0 <= T non-singular gives no solutions hence require A singular.

ii) If A singular then its nullity> 0 so nullspace(A) # {0} = no solutions OR solutions are

x+nullspace(A) hence not unique.
QED

The Determinant of a Matrix

Def®. A permutation ¢ is said to be even if it is a composition of an even number of transpositions &
sign(¢) = +1 & odd if a composition of an odd number of transpositions & sign(¢) = —1.

Def?. The determinant of an n x n matrix A = (a;;) is the scalar quantity

det(A) := Z sign(@)ap(1) -+ - Ung(n)
PESR

Th™®. FElementary row operations affect the determinant as follows:
i) det(l,) =1.
it) Applying (R2) changes the determinants sign.
1) If A has two equal rows det(A) = 0.
iv) Applying (R1) does not change the determinant.

v) Applying (R3) multiplies the determinant by .



Pl i) a;; =0 Vi # j so only identity permutation is non-zero det(l) = a1y - - - oy = 1.

H) det(B) = _Z¢€Sn Slgn(¢)ﬁl¢(l) 6n¢(n) let Y = ¢ ] (Z,]) now Slgn(sp) = —slgn(d)) hence =
ZchSn —sign(@)a,(1) - Ung(n) = —det(A).

iii) Use part (ii) & swap rows that are the same now det(A) = —det(A) = det(A) = 0.

iv)
det(B) = Y sign(d)arg() - (Qigw) + Ao -+ o)
PES,
= ) sign(@)ars) - gy A Y sign(d)aig) - Qo) Qo) - Ungin)
PES, PESH

Second term = 0 since «j4(;) repeated is the same as two equal rows.

v) det(B) =3 e, sign(@)ang) - Aig(iy * Qng(n) = A D pes, SI8R(A)1g(1) =+ Qng(n) = Adet(A)
QED

Def2. A matrix is upper triangular if all entries below the leading diagonal are zero.

CorY. The determinant of an upper triangular matriz is the product of its diagonal entries.

Def2. Let A = (a;;) be an m x n matrix. Define the transpose A” of A to be the n x m matrix
(Bi3) = (ai)-

Th2. Let A= (ay;) be an n x n matriz, then det(AT) = det(A).

Pl

det(A") = Z sign(9)Big(1) - - * Brg(n)

¢ES71

= Z sign(@)ag(1)1* Xg(n)n
¢ES’H,

= Y sign(@)aign) - Ansen
PES,

= det(A)
QED
CorY. Elementary column operations affect the determinant as row operations do.
Th®. Ann x n matriz A has det(A) =0 < A is singular.

PL. Row reduce A to obtain A’, det(A) =0 <= det(A’) = 0, A’ is upper triangular hence det(A) =
0 <= one diagonal entry is 0 <= A’ has a zero row <= rowrank(A) <n <= A is singular.

Lemma. If E is an elementary matriz & B any matriz both n x n then det(EB) = det(E) det(B).
Pl det(E') =1, det(E?) = —1, det(E®) = \ & consider row operations. QED
Th®2. For any two n x n matrices A & B: det(AB) = det(A) det(B).

P! det(AB) = det(E;)det(E; - - - E, B) = det(E}) - - - det(E,) det(B) = det(E; - - - E,,) det(B)
= det(A) det(B) QED

Def?. Let A = (a;j) be an n x n matrix. Let A;; be the matrix (n — 1) x (n — 1) obtained by eliminating
the i row & j*" column of A. M;; = det(4;;) is called the (i, j)!" minor of A.

Def?. ¢;; = (—1)" M;; = (—1)"*7 det(A;;) is called the (i, )" cofactor of A.

Th2. Let A be an n X n matriz.



i) Ezpansion by it" row: det(A) = ay1¢i1 + - + QinCin = Z?:l QjCij-

ii) Ezpansion by j column: det(A) = aijerj + -+ 4 anjcnj = D oi ) QijCij.

Pl
Z sign(@)aip(1) -+ - Ungn) = Z sign(o)aip(1) -+ Un—1p(n—1)
¢ € Sn $€5n—1
¢(n) =n
now det(B) = ﬂnnNnn = (—l)iHaijMij = Q;Cqj hence det(A) = Zaijcij for fixed 7 or j QED

Def®. Let A be an n x n matrix. Define the adjugate of A, adj(A), to be the n x n matrix with (i, j)*"
element the cofactor cj;. i.e: the transpose of the matrix of cofactors.

Th2. Aadj(A) = det(A)I, = adj(A)A
Pl A= (o) adj(A) = (cij) so Aadj(A) = (E;’:l aijckj). Itk #£14 Z;‘L:I a;;ck; = 0 hence
Aadj(A) = det(A)1, QED

CorY. Ifdet(A) #0 then A~' = madj(fl).

Change of Basis & Equivalent Matrices

Prop®. The change of basis matriz is invertible. i.e: if P is the change of basis matriz from e;’s to €}’s
€ Q is the change of basis ,matriz from €.’s to e;’s then P = Q1.

PL. Consider Iy : U — U — U where the first & last spaces use the same bases — PQ = I, —
P=Q! QED

Prop®. Pv =v" where v =aje; + -+ ane, & v = pre] + -+ Brel,.
P!, Obviousness QED

Th®. Let T : U — V be a linear map e, e’ bases of U, f, f' bases of V
P=[ldyl, Q=l[ldv}}, A=[T)5 B=IT];
Then B = QAP~1.

Poe 2y By frhence BP e f % f hence QA — BP = QA QED

Def2. A& B m x n matrices are equivalent iff there are invertible matrices P n X n matrix & @ m x m
matrix s.t. B = QAP.

Th2. Let A&B be m x n matrices over K the following conditions are equivalent:
i) A&B are equivalent.
it) AEB represent the same linear map wrt. different bases.
i1i) AEB have the same rank.
iv) B can be obtained from A using elementary row & column operations.

P! (i) <= (ii) by the previous Th™.

(if) = (iii) Since A& B represent the same linear map rank(A) = rank(7T") = rank(B).

(iii) = (iv) Both A&B have rank s so can be brought to Smith normal form by elementary row &
column operations. i.e: A <> S.N.F. < B

(iv) = (i) B = R-Ry—1---R1AC1Cy - - Cs where R; & C; are row & column operation elementary
matrices, hence B = QAP QED



Similar Matrices, Eigenvectors & Eigenvalues

Def®2. Two n X n matrices over K are said to be similar if 3 an n x n matrix P which is invertible with
B =P lAP.

Def?. A matrix similar to a diagonal matrix is said to be diagonalisable.

Def?. Let T': V — V be a linear map where V' is a vector space over K. Suppose v € V non-zero & some
A € K we have T'(v) = Av. Then v is called an eigenvector of T' & A an eigenvalue of T' corresponding
to v.

Def®. Let A be an n X n matrix over K. Suppose some non-zero vector v & scalar A € K satisfy
Av = M. Then v is called an eigenvector of A & A an eigenvalue of A corresponding to v.

Th2. Let A be an n x n matriz. Then X is an eigenvalue < det(A — AI,,) = 0.

Pl “—=" Av= \vso Av = M,v, (A — \I,)v = 0 for a solution det(A — \I,,) = 0.
“—=” det(A — A\,,) = 0 then A — AT, is singular, so has solutions = 3z s.t. Av = Av. QED

Def?. For an n x n matrix A the equation det(A — Az) = 0 is called the characteristic equation of A &
det(A — A\x) is called the characteristic polynomial.

Th2. Similar matrices have the same characteristic equation € hence the same eigenvalues.

P! Let A&B be similar hence B = P~'AP for some P
det(B — zI,,) = det(P~YAP — x1I,,) = det(P~1(A — x1,,) P) = det(P~1) det(A4 — z1I,,) det(P)
= det(P~!)det(P)det(A — zI,,) = det(A — x1,,) QED

Prop?®. Suppose A is upper triangular, the eigenvalues are just au;.
Pl det(A —xI,) = (@11 — ) (pn — ) = 0 QED

Th2. Let T :V — V be a linear map, the matriz of T is diagonal wrt. to some basis of V. <= V has
a basis consisting of eigenvectors of T'.

Equivalently: Let A be an n x n matriz over K. Then A is similar to a diagonal matrix <= K™ has
a basis of eigenvectors of A.

Pl « — 7 Suppose A = (cvi;) is diagonal wrt. a basis of V' hence T'(e;) = ay;e; so each e; is an
eigenvector.

“<=” Suppose ¢;’s are a basis of V consisting of eigenvectors, so T'(e;) = Ae; for some \; € K so the
matrix A = (Olij) with Qi = )\z

Thi. Let Aq,...,\- be distinct eigenvalues with vy,...,v, eigenvectors then vi,...,v,. are linearly in-
dependent.
P!, Induction on r. QED

CorY. If A has distinct eigenvalues it is diagonalisable.

Def2. The scalar product of two vectors v = (a,...,a,) & w = (B1,...,0,) in R™ is defined to be
veow =Y b

Def®. A basis by,...,b, is called orthonormal if b; - b; =1 Vi & b; - b; = 0 Vi # j.
Def?. An n x n matrix A is said to be symmetric if AT = A.
Def®. An n x n matrix A is said to be orthogonal if AT = A~! or indeed AAT = ATA =1,.

Prop®. An n x n matriz A over R is orthogonal
<= the rows ri,...,r, form an orthonormal basis of R™
<= the columns cy,...,c, form an orthonormal basis of R™.

P!, Orthogonal matrix A is invertible hence row & column ranks are n & hence the rows & columns
form bases. ATA=1, = r-r,=1Vi& ;- r; = 0 Vi # j. Similarly for the converse. QED
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Prop®. Let A be a real symmetric matriz then A has a n eigenvalue in R & all complex eigenvalues of
A are in R.

Pl det(A—\I, ) R[ laeg=n Av = Iv & Av = v (since A = A). Also, AT = AsovT AT =vTA =T
(v! A) =
v

SO o7 (A = Mo = T8 = (A= NvTv=0since vTv9#0 => A= X hence A € R

@\ @\

) =
QED

Prop®. Let A be a real symmetric matriz & let A1, Ao be two distinct eigenvalues vy, vo then vy - vo = 0.

Pl Ay, = /\1111 & Avg = Agvy since ’UTAT )\1111 , V3 T Avy = Alvag
& similarly vd Avy = Avdvy = Mvdvy = of Avy = Mv] vy
. (/\2 — )\1)1)1 Vg = 0 since )\2 — )\1 7é 0 V1 -V = 0 QED

Th®2, Let A be a real symmetric matriz. 3 a real orthogonal matric P with P~YAP = PT AP diagonal.

Pl (Case of distinct eigenvalues only) \; € R eigenvalues = v; € R" eigenvectors v; - v; = vlv; =0
for i # j since v; # 0 v; - v; = o; > 0 so replacing each v; with v;/\/a; we know v; - v; = 1 Vi. All the v;
are independent & form a basis (orthogonal). But P~ AP is the diagonal matrix with entries A1, ..., \,.

QED
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