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Power Rule: For x, y ∈ R & x, y > 0 If x < y ∀n ∈ N ⇐⇒ xn < yn This fails for x or y < 0.
Proof. Inductive.

Defn. |x| :=
{

x if x ≥ 0
−x if x < 0

Modulus:
∣∣|x|∣∣ = |x|, |xy| = |x||y|,

∣∣∣xy ∣∣∣ = |x|
|y|

Interval Property: For x, y ∈ R & b > 0 |x| < b ⇐⇒ −b < x < b if x = y − a |y − a| < b ⇐⇒
a− b < y < a+ b
Triangle Inequality: For x, y ∈ R |x+ y| ≤ |x|+ |y| Proof. Square both sides.

Defn. Arithmetic Mean := a1+...an
n , Geometric Mean := n

√
a1 · · · an

Workbook 2

Defn.

(an) is strictly increasing ⇐⇒ ∀n, an < an+1

(an) is increasing ⇐⇒ ∀n, an < an+1

(an) is strictly decreasing ⇐⇒ ∀n, an < an+1

(an) is decreasing ⇐⇒ ∀n, an < an+1

(an) is monotonic ⇐⇒ (an) is increasing or (an) is decreasing (or both)

(an) non-monotonic ⇐⇒ an is neither increasing nor decreasing

(an) is bounded above ⇐⇒ ∃U ∈ R s.t.∀n, an ≤ U (U is upper bound)

(an) is bounded below ⇐⇒ ∃L ∈ R s.t.∀n, an ≥ L (L is upper bound)

(an) is bounded ⇐⇒ (an) is bounded above and below

Defn. (an)→∞ ⇐⇒ ∀C > 0 ∃N ∈ N s.t. ∀n > N, an > C

Thm. (an) & (bn)-sequences & bn > an ∀n, if (an)→∞ then (bn)→∞

Thm. If (an)→∞ & (bn)→∞ then (an+bn)→∞, (anbn)→∞, (can)→∞ for c > 0 & (can)→ −∞
for c < 0

Defn. (an)→ 0 ⇐⇒ ∀ε > 0 ∃N ∈ N s.t. ∀n > N, |an| < ε

Lemma. (an)→∞ =⇒
(

1
an

)
→ 0 (“⇐=” is false)

Absolute Value Rule: (an)→ 0 ⇐⇒ (|an|)→ 0
Sandwich Rule: (For null sequences) If (an)→ 0 & 0 ≤ |bn| ≤ an ∀n =⇒ (bn)→ 0
Sum Rule: (For null sequences) If (an)→ 0&(bn)→ 0 then ∀c, d ∈ R (can + dbn)→ 0
Product Rule: (For null sequences) If (an)→ 0&(bn)→ 0 then (anbn)→ 0
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Workbook 3

Defn. (an)→ a ⇐⇒ ∀ε > 0 ∃N ∈ N s.t. ∀n > N, |an − a| < ε

Lemma. (an)→ a ⇐⇒ (an − a)→ 0

Uniqueness of Limits: A sequence cannot converge to more than one limit.

Thm. Every convergent sequence is bounded.

Sum Rule: If (an)→ a & (bn)→ b then ∀c, d ∈ R, (can + dbn)→ ca+ db
Product Rule: If (an)→ a & (bn)→ b then (anbn)→ ab

Quotient Rule: If (an)→ a & (bn)→ b, b, bn 6= 0 ∀n then
(
an
bn

)
→ a

b

Pf. (Of Quotient Rule) (bn)→ b =⇒ (bbn)→ b2 =⇒ bbn >
b2

2 for some n now: (bbn − b2)→ 0 divide

by b2bn gives
(

1
b −

1
bn

)
→ 0 or

∣∣∣ 1b − 1
bn

∣∣∣ =
∣∣∣ bn−bbbn

∣∣∣ since b2

2 < bbn,
2
b2 > 1

bbn
=⇒

∣∣∣ b−bnbbn

∣∣∣ ≤ 2
b2 |b − bn|

since (bn)→ b, 2
b2 |b− bn| → 0 =⇒

(
1
bn

)
→ 1

b (again given b 6= 0). QED

Sandwich Rule: If (an)→ ` & (bn)→ ` & an ≤ cn ≤ bn (eventually – see shift rule)then (cn)→ `

Defn. (an) satisfies a property eventually if ∃N ∈ N s.t. (aN+n) satisfies the property.

Lemma. If a sequence is eventually bounded, it is bounded.

Shift Rule: (an)→ a ⇐⇒ (aN+n)→ a

Lemma. If (an)→ a & an ≥ 0 ∀n then a ≥ 0 (Strict inequality is false)

Thm. If (an)→ a & (bn)→ b & eventually an ≤ bn then a ≤ b

Corly. Closed interval rule: If (an)→ a & eventually A ≤ an ≤ B then A ≤ a ≤ B

Defn. A subsequence of (an) is (ani
) where (ni) is a strictly increasing sequaence in N.

Lemma. Every subsequence of a bounded sequence is bounded.

Thm. Every sequence has a monotonic subsequence.

Workbook 4

Bernoulli’s inequality: For x > −1 & n ∈ N : (1 + x)n ≥ 1 + nx.

Propn. If x > 0 then (x1/n)→ 1.

Lemma. Ratio Lemma: Let a0, a1, . . . be a sequence where an > 0∀n. If an+1

an
≤ ` eventually and

0 < l < 1 then (an)→ 0.

Corly. Let a0, a1, . . . be a sequence where an > 0∀n. If an+1

an
→ a & 0 ≤ a < 1 then (an) → 0 (N.B:

a 6= 1).

Workbook 5

Defn. A real number is rational if it can be written p
q s.t.p, q ∈ Z, q 6= 0. A real number that is not

rational is irrational.

Thm.
√

2 is irrational.

Thm. Between any two distinct real numbers there is a rational number. i.e: If a < b∃pq ∈ Qs.t.a < p
q <

b.

Corly. There are an infinite number of rational numbers in the interval (a, b), given a < b.

Thm. Between any two distinct real numbers there is an irrational number.
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Corly. There are an infinite number of irrational numbers in the interval (a, b), given a < b.

Defn. A- a non-empty set of real numbers, is:

- bounded above if ∃Us.t.a ≤ U∀a ∈ A (U is an upper bound).

- bounded below if ∃Ls.t.a ≥ L∀a ∈ A (L is a lower bound).

- bounded if it is bounded above and below.

Defn. u is a least upper bound of A if:

- u is an upper bound of A.

- if U is any upper bound of A then u ≤ U . (supA = u)

` is a greatest lower bound of A if:

- ` is an lower bound of A.

- if U is any lower bound of A then ` ≤ U . (inf A = `)

Completeness Axiom: Every non-empty subset of the reals that is bounded above has a least upper
bound. See workbook 6 for alternative forms.

Thm. Every positive real number has a unique kth root.

Workbook 6

Thm. Bolzano-Weierstrass: Every bounded sequence has a convergent subsequence.

Convergence Test: A monotonic sequence converges iff it is bounded.

Defn. (an) is Cauchy ⇐⇒ ∀ε > 0 ∃N ∈ N s.t. ∀n,m > N, |an − am| < ε.

Thm. Every Cauchy sequence is convergent.

Convergence Test: A sequence is convergent iff it has the Cauchy property.
Convergence Axiom: Every non-empty set A of the real numbers which is bounded above has a least
upper bound; supA.
Equivalent Conditions:

- Every non-empty set A of the real numbers which is bounded below has a greatest lower bound;
inf A

- Every bounded increasing sequence is convergent.

- Every bounded decreasing sequence is convergent.

- Every bounded sequence has a convergent subsequence.

- Every infinite decimal sequence is convergent.

Defn. A positive real number x has a representation as an infinite decimal if there is a non-negative
integer d0 & a sequence (dn) with dn ∈ {0, . . . , 9} ∀ns.t. the sequence with nth term defined by: d0 +
d1
10 + d2

102 + · · ·+ dn
10n =

∑n
j=0 dj · 10−j converges to x. We write x = d0.d1d2d3 . . .

Thm. Every infinite decimal ±d0.d1d2d3 . . . represents a real number.

Thm. If a positive real number has two different representations as an infinite decimal, one is finite (i.e.
ends . . . 000 . . . ) and the other ends with recurring nines (i.e. ends . . . 999 . . . ).

Defn. ±d0.d1d2d3 . . . is:

- terminating if ∃N ∈ N s.t. ∀n > N dn = 0.
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- recurring if ∃N, r ∈ N s.t. ∀n > N dn = dn+r.

- non-recurring if it is not terminating or recurring.

Thm. A number x can be represented by a terminating decimal iff x = p
q for p, q ∈ Z where the only

prime factors of q are 2’s & 5’s.

Thm. Every recurring decimal represents a rational number.

Corly. Every recurring decimal x with repeating block length k can be written as x = p
q(10k)−1 where the

only prime factors of q are 2’s & 5’s.

Thm. Every rational number can be represented by a recurring or terminating decimal.

Thm. The rationals are the sent of terminating or recurring decimals. The irrationals are the set of
non-recurring decimals.
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Defn. Consider the series
∑∞
n=1 an = a1+a2+a3+· · · with partial sums (sn) where sn = a1 + · · ·+ an =

∑n
i=1 ai

-
∑∞
n=1 an converges if (sn) converges, if (sn)→ s then

∑∞
n=1 an = s.

-
∑∞
n=1 an diverges if (sn) does not converge.

-
∑∞
n=1 an diverges to ±∞ if sn → ±∞.

Geometric Series:
∑∞
n=0 x

n is convergent if |x| < 1 and its sum is 1
1−x . It is divergent if |x| ≥ 1.

Sum rule for series: If
∑∞
n=1 an &

∑∞
n=1 bn are convergent then ∀c, d ∈ R,

∑∞
n=1(can+dbn) is convergent

&
∑∞
n=1(can + dbn) = c

∑∞
n=1 an + d

∑∞
n=1 bn.

Shift rule for series: Let N ∈ N,
∑∞
n=1 an converges iff

∑∞
n=1 aN+n converges.

Boundedness Condition: If an ≥ 0 then
∑∞
n=1 an converges iff sn =

∑n
j=1 aj is bounded.

Null sequence test: If (an) 6→ 0 then
∑∞
n=1 an diverges. (Diverges only)

Comparison test: If 0 ≤ an ≤ bn ∀n ∈ N &
∑∞
n=1 bn converges then

∑∞
n=1 an converges &

∑∞
n=1 an ≤∑∞

n=1 bn.

Corly. If 0 ≤ an ≤ bn ∀n ∈ N &
∑∞
n=1 bn diverges then

∑∞
n=1 an diverges.

Defn. e :=
∑∞
n=1

1
(n−1)! = 1 + 1 + 1

2! + 1
3! + · · ·

Thm. e = limn→∞(1 + 1
n )n

Thm. e is irrational.
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Ratio test: If an > 0 ∀n ∈ N & an+1

an
→ ` then

∑
an converges if 0 ≤ ` < 1 & diverges if ` > 1.

Integral test: If f(x) > 0 & decreasing for x ≥ 1 then:

-
∑∞
n=1 f(n) converges if the sequence (

∫ n
1
f(x).dx) is bounded.

-
∑∞
n=1 f(n) diverges if the sequence (

∫ n
1
f(x).dx) is unbounded.

Corly.
∑∞
n=1

1
np converges for p > 1 & diverges for 0 < p ≤ 1.

Workbook 9

Alternating series test: If (an) is decreasing & null then
∑

(−1)n+1an is convergent.

Defn.
∑
an is absolutely convergent if

∑
|an| is convergent.

Thm. Every absolutely convergent series is convergent. (N.B: not vice versa)

Ratio test: If an 6= 0 ∀n ∈ N &
∣∣∣an+1

an

∣∣∣→ ` then
∑
an converges absolutely (hence converges) if 0 ≤ ` < 1

& diverges if ` > 1.

Ratio test varient: If an 6= 0 ∀n ∈ N &
∣∣∣an+1

an

∣∣∣→∞ then
∑
an diverges.
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Defn. (bn) is a rearrangement of (an) if ther exists a bijection σ : N→ N (i.e: a permutation on N) s.t.
bn = aσ(n) ∀n.

Lemma. is
∑
an is a convergent series of non-negative terms & (bn) is a rearrangement of (an) then∑

bn converges &
∑
bn =

∑
an.

Thm. If
∑
an is an absolutely convergent series & (bn) is a rearrangement of (an) then

∑
bn then

∑
bn

is convergent &
∑
bn =

∑
an.

Defn.
∑
an is conditionally convergent if

∑
an is convergent but

∑
|an| is not.

Lemma. If a series is conditionally convergent the series of its positive terms diverges to infinity & the
series of its negative terms diverges to minus infinity.

Thm. Rieman’s Rearrangement: If
∑
an is conditionally convergent then ∀` ∈ R ∃(bn) a rearrangement

of (an) s.t.
∑
bn = `.
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