Analysis I

Jack Betteridge

15/2/13

Workbook 1

<u>Power Rule</u>: For $x, y \in \mathbb{R}$ & x, y > 0 If $x < y \ \forall n \in \mathbb{N} \iff x^n < y^n$ This fails for x or y < 0. *Proof.* Inductive.

 $\mathbf{Def^{\underline{n}}}, \ |x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

 $\begin{array}{ll} \underline{\text{Modulus:}} & \left| |x| \right| = |x|, & |xy| = |x||y|, & \left| \frac{x}{y} \right| = \frac{|x|}{|y|} \\ \underline{\text{Interval Property:}} & \text{For } x, y \in \mathbb{R} \ \& \ b > 0 \ |x| < b \\ \iff \ -b < x < b \ \text{if } x = y - a \ |y - a| < b \\ \iff \\ \underline{\text{Triangle Inequality:}} & \text{For } x, y \in \mathbb{R} \ |x + y| \leq |x| + |y| \ Proof. \ \text{Square both sides.} \end{array}$

Def^{<u>n</u>}. <u>Arithmetic Mean</u> := $\frac{a_1 + \dots a_n}{n}$, <u>Geometric Mean</u> := $\sqrt[n]{a_1 \cdots a_n}$

Workbook 2

 $\operatorname{Def}^{\underline{n}}$.

(a_n) is strictly increasing	\iff	$\forall n, \ a_n < a_{n+1}$
(a_n) is increasing	\iff	$\forall n, a_n < a_{n+1}$
(a_n) is strictly decreasing	\iff	$\forall n, a_n < a_{n+1}$
(a_n) is decreasing	\iff	$\forall n, a_n < a_{n+1}$
(a_n) is monotonic	\iff	(a_n) is increasing or (a_n) is decreasing (or both)
(a_n) non-monotonic	\iff	a_n is neither increasing nor decreasing
(a_n) is bounded above	\iff	$\exists U \in \mathbb{R} \ s.t. \forall n, a_n \leq U \ (U \text{ is upper bound})$
(a_n) is bounded below	\iff	$\exists L \in \mathbb{R} \ s.t. \forall n, a_n \geq L \ (L \text{ is upper bound})$
(a_n) is bounded	\iff	(a_n) is bounded above and below

Def^{<u>n</u>}. $(a_n) \to \infty \iff \forall C > 0 \exists N \in \mathbb{N} \ s.t. \ \forall n > N, \ a_n > C$

Th^m. (a_n) & (b_n) -sequences & $b_n > a_n \forall n, if (a_n) \to \infty$ then $(b_n) \to \infty$

Th^m. If $(a_n) \to \infty$ & $(b_n) \to \infty$ then $(a_n + b_n) \to \infty$, $(a_n b_n) \to \infty$, $(ca_n) \to \infty$ for c > 0 & $(ca_n) \to -\infty$ for c < 0

 $\mathbf{Def^{\underline{n}}.}\ (a_n) \to 0 \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ s.t. \ \forall n > N, \ |a_n| < \varepsilon$

Lemma. $(a_n) \to \infty \implies \left(\frac{1}{a_n}\right) \to 0 \quad (```<="`` is false)$

<u>Absolute Value Rule</u>: $(a_n) \to 0 \iff (|a_n|) \to 0$ <u>Sandwich Rule</u>: (For null sequences) If $(a_n) \to 0 \& 0 \le |b_n| \le a_n \forall n \implies (b_n) \to 0$ <u>Sum Rule</u>: (For null sequences) If $(a_n) \to 0\&(b_n) \to 0$ then $\forall c, d \in \mathbb{R} (ca_n + db_n) \to 0$ <u>Product Rule</u>: (For null sequences) If $(a_n) \to 0\&(b_n) \to 0$ then $(a_nb_n) \to 0$

Workbook 3

Def^{<u>n</u>}. $(a_n) \to a \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ s.t. \ \forall n > N, \ |a_n - a| < \varepsilon$

Lemma. $(a_n) \to a \iff (a_n - a) \to 0$

Uniqueness of Limits: A sequence cannot converge to more than one limit.

 $\mathbf{Th}^{\underline{\mathbf{m}}}$. Every convergent sequence is bounded.

<u>Sum Rule</u>: If $(a_n) \to a \& (b_n) \to b$ then $\forall c, d \in \mathbb{R}, (ca_n + db_n) \to ca + db$ <u>Product Rule</u>: If $(a_n) \to a \& (b_n) \to b$ then $(a_n b_n) \to ab$ <u>Quotient Rule</u>: If $(a_n) \to a \& (b_n) \to b, \ b, b_n \neq 0 \ \forall n \text{ then } \left(\frac{a_n}{b_n}\right) \to \frac{a}{b}$

 $P^{\underline{f}}. \text{ (Of Quotient Rule) } (b_n) \to b \implies (bb_n) \to b^2 \implies bb_n > \frac{b^2}{2} \text{ for some } n \text{ now: } (bb_n - b^2) \to 0 \text{ divide}$ by $b^2b_n \text{ gives } \left(\frac{1}{b} - \frac{1}{b_n}\right) \to 0 \text{ or } \left|\frac{1}{b} - \frac{1}{b_n}\right| = \left|\frac{b_n - b}{bb_n}\right| \text{ since } \frac{b^2}{2} < bb_n, \ \frac{2}{b^2} > \frac{1}{bb_n} \implies \left|\frac{b - b_n}{bb_n}\right| \le \frac{2}{b^2}|b - b_n|$ since $(b_n) \to b, \ \frac{2}{b^2}|b - b_n| \to 0 \implies \left(\frac{1}{b_n}\right) \to \frac{1}{b} \text{ (again given } b \neq 0).$ QED

<u>Sandwich Rule</u>: If $(a_n) \to \ell \& (b_n) \to \ell \& a_n \le c_n \le b_n$ (eventually – see shift rule)then $(c_n) \to \ell$

Def^{**n**}. (a_n) satisfies a property eventually if $\exists N \in \mathbb{N} \ s.t. \ (a_{N+n})$ satisfies the property.

Lemma. If a sequence is eventually bounded, it is bounded.

<u>Shift Rule</u>: $(a_n) \to a \iff (a_{N+n}) \to a$

Lemma. If $(a_n) \to a \& a_n \ge 0 \forall n \text{ then } a \ge 0 \text{ (Strict inequality is false)}$

Th^m. If $(a_n) \to a \& (b_n) \to b & & eventually <math>a_n \leq b_n$ then $a \leq b$

Cor^{<u>ly</u>}. <u>Closed interval rule</u>: If $(a_n) \to a$ & eventually $A \leq a_n \leq B$ then $A \leq a \leq B$

Def^{**n**}. A subsequence of (a_n) is (a_{n_i}) where (n_i) is a strictly increasing sequence in N.

Lemma. Every subsequence of a bounded sequence is bounded.

Th^m. Every sequence has a monotonic subsequence.

Workbook 4

Bernoulli's inequality: For x > -1 & $n \in \mathbb{N} : (1+x)^n \ge 1 + nx$.

Prop^{<u>n</u>}. If x > 0 then $(x^{1/n}) \rightarrow 1$.

Lemma. <u>Ratio Lemma</u>: Let a_0, a_1, \ldots be a sequence where $a_n > 0 \forall n$. If $\frac{a_{n+1}}{a_n} \leq \ell$ eventually and 0 < l < 1 then $(a_n) \rightarrow 0$.

Cor^{<u>ly</u>}. Let a_0, a_1, \ldots be a sequence where $a_n > 0 \forall n$. If $\frac{a_{n+1}}{a_n} \to a \notin 0 \leq a < 1$ then $(a_n) \to 0$ (N.B: $a \neq 1$).

Workbook 5

Def^{<u>n</u>}. A real number is rational if it can be written $\frac{p}{q}s.t.p, q \in \mathbb{Z}, q \neq 0$. A real number that is not rational is irrational.

Th^m. $\sqrt{2}$ is irrational.

Th^m. Between any two distinct real numbers there is a rational number. i.e. If $a < b \exists \frac{p}{q} \in \mathbb{Q}s.t.a < \frac{p}{q} < b.$

Cor^{<u>ly</u>}. There are an infinite number of rational numbers in the interval (a, b), given a < b.

Th^m. Between any two distinct real numbers there is an irrational number.

Cor^{<u>ly</u>}. There are an infinite number of irrational numbers in the interval (a, b), given a < b.

Defⁿ. A- a non-empty set of real numbers, is:

- bounded above if $\exists Us.t.a \leq U \forall a \in A$ (U is an upper bound).
- bounded below if $\exists Ls.t.a \geq L \forall a \in A$ (L is a lower bound).
- bounded if it is bounded above and below.

Def^{$\underline{\mathbf{n}}$}. u is a least upper bound of A if:

- u is an upper bound of A.
- if U is any upper bound of A then $u \leq U$. (sup A = u)

 ℓ is a greatest lower bound of A if:

- ℓ is an lower bound of A.
- if U is any lower bound of A then $\ell \leq U$. (inf $A = \ell$)

Completeness Axiom: Every non-empty subset of the reals that is bounded above has a least upper bound. See workbook 6 for alternative forms.

Th^m. Every positive real number has a unique k^{th} root.

Workbook 6

Th^m. <u>Bolzano-Weierstrass</u>: Every bounded sequence has a convergent subsequence.

Convergence Test: A monotonic sequence converges iff it is bounded.

Def^{<u>n</u>}. (a_n) is Cauchy $\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ s.t. \ \forall n, m > N, \ |a_n - a_m| < \varepsilon.$

Th^m. Every Cauchy sequence is convergent.

Convergence Test: A sequence is convergent iff it has the Cauchy property.

Convergence Axiom: Every non-empty set A of the real numbers which is bounded above has a least upper bound; $\sup A$.

Equivalent Conditions:

- Every non-empty set A of the real numbers which is bounded below has a greatest lower bound; inf A
- Every bounded increasing sequence is convergent.
- Every bounded decreasing sequence is convergent.
- Every bounded sequence has a convergent subsequence.
- Every infinite decimal sequence is convergent.

Def^{**n**}. A positive real number x has a representation as an infinite decimal if there is a non-negative integer d_0 & a sequence (d_n) with $d_n \in \{0, \ldots, 9\} \forall ns.t$. the sequence with n^{th} term defined by: $d_0 + \frac{d_1}{10} + \frac{d_2}{10^2} + \cdots + \frac{d_n}{10^n} = \sum_{j=0}^n d_j \cdot 10^{-j}$ converges to x. We write $x = d_0.d_1d_2d_3\ldots$

Th^m. Every infinite decimal $\pm d_0.d_1d_2d_3...$ represents a real number.

Th^m. If a positive real number has two different representations as an infinite decimal, one is finite (i.e. ends $\dots 000\dots$) and the other ends with recurring nines (i.e. ends $\dots 999\dots$).

Def^{<u>n</u>}. $\pm d_0.d_1d_2d_3...$ is:

- terminating if $\exists N \in \mathbb{N} \ s.t. \ \forall n > N \ d_n = 0.$

- recurring if $\exists N, r \in \mathbb{N} \ s.t. \ \forall n > N \ d_n = d_{n+r}$.
- non-recurring if it is not terminating or recurring.

Th^m. A number x can be represented by a terminating decimal iff $x = \frac{p}{q}$ for $p, q \in \mathbb{Z}$ where the only prime factors of q are 2's & 5's.

Th^m. Every recurring decimal represents a rational number.

Cor^{ly}. Every recurring decimal x with repeating block length k can be written as $x = \frac{p}{q(10^k)-1}$ where the only prime factors of q are 2's & 5's.

Th^m. Every rational number can be represented by a recurring or terminating decimal.

Th^m. The rationals are the sent of terminating or recurring decimals. The irrationals are the set of non-recurring decimals.

Workbook 7

Def^{<u>n</u>}. Consider the series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$ with partial sums (s_n) where $s_n = a_1 + \cdots + a_n = \sum_{i=1}^n a_i$

- $\sum_{n=1}^{\infty} a_n$ converges if (s_n) converges, if $(s_n) \to s$ then $\sum_{n=1}^{\infty} a_n = s$.
- $\sum_{n=1}^{\infty} a_n$ diverges if (s_n) does not converge.
- $\sum_{n=1}^{\infty} a_n$ diverges to $\pm \infty$ if $s_n \to \pm \infty$.

 $\frac{\text{Geometric Series: } \sum_{n=0}^{\infty} x^n \text{ is convergent if } |x| < 1 \text{ and its sum is } \frac{1}{1-x}. \text{ It is divergent if } |x| \ge 1.$ $\frac{\text{Geometric Series: } \prod \sum_{n=1}^{\infty} a_n \& \sum_{n=1}^{\infty} b_n \text{ are convergent then } \forall c, d \in \mathbb{R}, \sum_{n=1}^{\infty} (ca_n + db_n) \text{ is convergent } k \ge_{n=1}^{\infty} (ca_n + db_n) = c \sum_{n=1}^{\infty} a_n + d \sum_{n=1}^{\infty} b_n.$ $\frac{\text{Shift rule for series: Let } N \in \mathbb{N}, \sum_{n=1}^{\infty} a_n \text{ converges iff } \sum_{n=1}^{\infty} a_{N+n} \text{ converges.}$ $\frac{\text{Boundedness Condition: If } a_n \ge 0 \text{ then } \sum_{n=1}^{\infty} a_n \text{ diverges.} (Diverges \text{ only})$ $\frac{\text{Comparison test: If } (a_n) \neq 0 \text{ then } \sum_{n=1}^{\infty} a_n \text{ diverges.} (Diverges \text{ only})$ $\frac{\text{Comparison test: If } 0 \le a_n \le b_n \forall n \in \mathbb{N} \& \sum_{n=1}^{\infty} b_n \text{ converges then } \sum_{n=1}^{\infty} a_n \text{ converges } \& \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} a_n \text{ diverges.}$ $\frac{\text{Cor}^{\text{ly}}. If \ 0 \le a_n \le b_n \forall n \in \mathbb{N} \& \sum_{n=1}^{\infty} b_n \text{ diverges then } \sum_{n=1}^{\infty} a_n \text{ diverges.}$ $\text{Def}^{\mathbf{n}}. \ e := \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$ $\text{Th}^{\mathbf{m}}. \ e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

Workbook 8

<u>Ratio test</u>: If $a_n > 0 \ \forall n \in \mathbb{N}$ & $\frac{a_{n+1}}{a_n} \to \ell$ then $\sum a_n$ converges if $0 \le \ell < 1$ & diverges if $\ell > 1$. <u>Integral test</u>: If f(x) > 0 & decreasing for $x \ge 1$ then:

- $\sum_{n=1}^{\infty} f(n)$ converges if the sequence $(\int_{1}^{n} f(x) dx)$ is bounded.
- $\sum_{n=1}^{\infty} f(n)$ diverges if the sequence $(\int_{1}^{n} f(x) dx)$ is unbounded.

Cor^{ly}. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 & diverges for 0 .

Workbook 9

Alternating series test: If (a_n) is decreasing & null then $\sum (-1)^{n+1} a_n$ is convergent.

Def^{<u>n</u>}. $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent.

Th^m. Every absolutely convergent series is convergent. (N.B: not vice versa)

<u>Ratio test</u>: If $a_n \neq 0 \ \forall n \in \mathbb{N} \& \left| \frac{a_{n+1}}{a_n} \right| \to \ell$ then $\sum a_n$ converges absolutely (hence converges) if $0 \le \ell < 1$ & diverges if $\ell > 1$.

<u>Ratio test varient</u>: If $a_n \neq 0 \ \forall n \in \mathbb{N} \& \left| \frac{a_{n+1}}{a_n} \right| \to \infty$ then $\sum a_n$ diverges.

Workbook 10

Def^{<u>n</u>}. (b_n) is a rearrangement of (a_n) if ther exists a bijection $\sigma : \mathbb{N} \to \mathbb{N}$ (i.e. a permutation on \mathbb{N}) s.t. $b_n = a_{\sigma(n)} \forall n$.

Lemma. is $\sum a_n$ is a convergent series of non-negative terms & (b_n) is a rearrangement of (a_n) then $\sum b_n$ converges & $\sum b_n = \sum a_n$.

Th^{<u>m</u>}. If $\sum a_n$ is an absolutely convergent series $\mathscr{C}(b_n)$ is a rearrangement of (a_n) then $\sum b_n$ then $\sum b_n$ is convergent $\mathscr{C} \sum b_n = \sum a_n$.

Def^{<u>n</u>}. $\sum a_n$ is conditionally convergent if $\sum a_n$ is convergent but $\sum |a_n|$ is not.

Lemma. If a series is conditionally convergent the series of its positive terms diverges to infinity \mathcal{E} the series of its negative terms diverges to minus infinity.

Th^m. <u>Rieman's Rearrangement</u>: If $\sum a_n$ is conditionally convergent then $\forall \ell \in \mathbb{R} \exists (b_n) a \text{ rearrangement}$ of (a_n) s.t. $\sum b_n = \ell$.